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Who should read this paper?
Spill response organizations, oil industry executives, environmental protection 
agencies and any others with a need to better understand the complex 
interactions between technical, environmental and logical factors at play 
during oil spill clean-up operations. 
 
Why is it important?
Clean-up of an offshore oil spill is a dynamic, multifaceted operation that 
is subject to many variables and constraints. The objective is to quickly 
respond and complete the clean-up within the shortest time period to minimize 
environmental impacts and the cost of the operation. However, uncertainties 
in the decision-making process may arise from subjective judgments regarding 
what type of clean-up equipment to deploy (skimmers, centrifugal separators, 
vacuum trucks, incineration barges, etc.) and when, and how to adapt the 
response activities to changing environmental and spill conditions. In an 
effort to simultaneously address these different types of uncertainty, the 
authors have applied the rigour of mathematics to the vagueness inherent in 
the decision-making process. A combination of fuzzy set theory, probability 
theory, and interval analysis are combined in an effort to provide decision 
makers with a better understanding of the impact of their decisions. The 
advantage of using a case study is that many scenarios can easily and quickly 
be tested. In this case, no less than 1,000 groups of decision variables were 
included in the analysis.

Results of this work suggest that a mathematical tool, or set of tools, could 
be developed for use by oil spill response organizations to allocate limited 
resources with higher confidence in the shortest period of time during oil 
spill clean-up operations.
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Jing, Chen, Zhang and Li suggest a unique 
mathematical approach to optimizing oil spill  
clean-up operations, and illustrate their approach  
by means of a hypothetical case study.
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ABSTRACT

In this paper, a stochastic simulation-based hybrid interval fuzzy programming (SHIFP) approach 
is developed to aid the decision-making process by solving fuzzy linear optimization problems. 
Fuzzy set theory, probability theory, and interval analysis are integrated to take into account the 
effect of imprecise information, subjective judgment, and variable environmental conditions. A 
case study related to oily water treatment during offshore oil spill clean-up operations is conducted 
to demonstrate the applicability of the proposed approach. The results suggest that producing a 
random sequence of triangular fuzzy numbers in a given interval is equivalent to a normal 
distribution when using the centroid defuzzification method. It also shows that the defuzzified 
optimal solutions follow the normal distribution and range from 3,000-3,700 tons, given the 
budget constraint (CAD 110,000-150,000). The normality seems to be able to propagate 
throughout the optimization process, yet this interesting finding deserves more in-depth study 
and needs more rigorous mathematical proof to validate its applicability and feasibility. In 
addition, the optimal decision variables can be categorized into several groups with different 
probability such that decision makers can wisely allocate limited resources with higher 
confidence in a short period of time. This study is expected to advise the industries and 
authorities on how to distribute resources and maximize the treatment efficiency of oily  
water in a short period of time, particularly in the context of harsh environments.
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NOMENCLATURE

	 =	 value of the fuzzy objective function 	
		  (total daily treatment capacity in 	
		  tons/day)
	 =	 fuzzy objective function coefficients 	
		  (hourly treatment capacities of each 	
		  facility in tons/hour)
	 = 	 fuzzy decision variables (daily 		
		  operation hours of each facility in 	
		  hours)
Mj	 =	 upper bounds of decision variables 	
		  (maximum daily operation hours of 	
		  each facility in hours)                    
Nj	 =	 total numbers of each facility
	 = 	 fuzzy operation and maintenance 	
		  costs of each facility (CAD/hr)
	 =	 fuzzy transportation costs of each 	
		  facility (CAD/ton)
	 =	 fuzzy selling prices of recovered 	
	 	 bunker oil from each facility (CAD/ton)

	 =	 fuzzy maximum daily total 		
		  budget (CAD)
j	 =	 facility sequence
Random  =	 random numbers for the left, 	
		  right, and vertex points of and 
	 =	 fuzzy constraint coefficients	
 	 =	 fuzzy right-hand sides of 		
		  constraints        
min	 =	 minimum bounds of and          
max	 = 	 maximum bounds of and 
  	 =	 fuzzy number			 
 	 =	 membership function of 
a	 = 	 minimum bounds of 		
c 	 =	 maximum bounds of 
urnd 	 =	 Sobol quasi-random numbers of 	
		  uniform distribution
 	 =	 corresponding value of the fuzzy 	
		  objective function
	 = 	 current best fuzzy objective 	
		  function

INTRODUCTION

An offshore oil spill is defined as the discharge 
or release of petroleum hydrocarbons into the 
ocean or coastal waters. It may be due to the 
collision and/or grounding of oil tankers, 
accidental spill or leakage from offshore 
platforms and drilling rigs, and natural disasters 
such as typhoons and earthquakes that can 
cause huge damage to sea-based facilities and 
tankers. Crude oil, refined petroleum products 
and their by-products, bunker fuel, and waste 
oil have long been identified as the major 
contributors to marine oil pollution. They can 
constitute a direct hazard to marine ecosystems 
and human health through a variety of pathways, 
including digestion of oil, oiling of feathers 
and skins, avoidance of oil habitat, inhalation 

or dermal contact, and indirect threats to seafood 
safety and mental health [Boehm et al., 2008]. 
Less than 1% of the oil-soaked animals can 
survive and the residual contamination is 
believed to chronically affect wildlife and human 
health even for decades. The clean-up of offshore 
oil spills is usually subject to many constraints 
such as the type of oil, the oil-water volume 
fraction, and the temperature. The most 
commonly used methods include booming and 
skimming, chemical dispersants, biodegradation, 
in situ burning, and use of sorbants. Each 
method has its own advantages and 
disadvantages while skimming is one of the 
most environmentally friendly oil removal 
techniques [Pezeshki et al., 2000; You and 
Leyffer, 2011]. Oil skimmers can float across 
the top of the slick contained within the boom 
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and suck or scoop the oils of different 
viscosities into storage tanks without adding 
chemicals. It is worth noting that most crude 
oils and intermediate to heavy products can 
emulsify and form so-called water-in-oil-
emulsions when spilled at sea. Therefore,  
the recovered mixture usually contains not 
only oil but also water and needs to be further 
treated before discharge [Gaaseidnes and 
Turbeville, 1999; Maguire-Boyle and  
Barron, 2011]. 

The simplest treatment is nothing more than 
using a series of large holding tanks to allow 
water and oil to be separated under the action 
of gravity alone. In addition to that, centrifugal 
separators are known in which the oily  
mixture is forced to rotate at extremely high 
angular velocities thereby causing the 
separation of oil and water by density [Krebs et 
al., 2012]. Other management options such as 
destruction by incineration and direct disposal 
to landfill have also been implemented in some 
areas to accommodate the limited storage or 
processing capacity. However, a rich body of 
literature indicated that the transportation and 
treatment of recovered oily water usually 
requires a large number of personnel and 
equipment [Dollhopf and Durno, 2011]. This 
may, if not properly planned, significantly 
increase the cost and time of clean-up and pose 
a variety of technical challenges, particularly in 
the context of harsh environments where cold 
water, low temperature, dynamic/strong wave 
and current can significantly affect the 
applicability of these measures [Jing et al., 
2012]. While an optimized contingency plan 
can make all relevant units orderly, the 
scheduled tasks should be completed within the 
shortest time period to minimize costs and 
associated environmental impacts. To deal with 

this, the application of system optimization 
approaches for supporting environmental 
decision-making processes could be a 
promising solution [Krohling and Campanharo, 
2011; Wandera et al., 2011].

Precise information is difficult to obtain due  
to imperfect knowledge, measurement error, 
limited data accessibility, and variations of 
parameters which are inherent to the 
environment. System optimization problems, 
therefore, are usually subject to various 
uncertainties and complex interactions among 
technical, environmental and managerial factors. 
As one of the traditional optimization 
approaches, fuzzy linear programming (FLP) 
has long been investigated and advanced since 
the early stage of fuzzy set theory which allows 
the representation of uncertainties due to human 
impreciseness in the form of membership 
functions [Bellman and Zadeh, 1970; Maleki 
et al., 2000; Zhang et al., 2003; Veeramani et 
al., 2011]. It can be used to effectively reflect 
known possibilities and formulate the vagueness 
inherent in decision-making processes in an 
efficient way. Many attempts have been reported 
in the literature to use FLP in environmental 
decision-making [Chen et al., 2003; Xu et al., 
2009; Li and Chen, 2011; Tan et al., 2011]. On 
the other hand, stochastic methods also have 
been widely used to tackle uncertainties with 
known probability distribution functions 
especially for objective and constraint 
coefficients. Review of the existing studies 
suggests that the most rigorous method of 
fitting a probability distribution is using the 
normal distribution [Kiemele et al., 1997; Dunn 
and Clark, 2009]. However, the central limit 
theorem defines that a normal distribution can 
only be approximated with a sufficiently large 
sample size which is often impractical under 
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subject to:

where     is the value of the objective function;    
     are the objective function coefficients;   
are the decision variables;     are the constraint 
coefficients;    are the right-hand sides of the 
constraints; and      ,which are real numbers, 
are the upper bounds of decision variables. A 
basic assumption is that     ,      ,     and     are 
all triangular fuzzy numbers. Note that    and 
      are usually given by literature data or 
subjective experience. On the other hand, 
and     , such as machine hours, labour force, 
required materials, and operational cost are 
usually imprecise due to incomplete information 
and the lack of complete understanding. Their 
minimum and maximum bounds can be 
determined based on literature review or expert 
survey. To account for imprecise knowledge 
and to model the uncertainty, triangular fuzzy 
numbers with regard to     ,     and the 
corresponding      are randomly generated 
using Monte Carlo simulation within given 
intervals such that the left spread, right spread, 
and vertex values are assumed to have uniform 
distributions. The uniform distribution is 
commonly used where one can specify only 
the minimum and maximum possible values 
for the input variable. Subsequently, the 
constraints are examined to verify if any of 
them has been violated. If all constraints are 
satisfied,      are determined to be feasible and 
a corresponding value of the objective function
    can be calculated. If     is the current best 
and      >    , then      should be replaced with   , 
otherwise     is discarded. Repeat the above 
procedure for a preset number of replications; 

normal circumstances [Liu et al., 2010]. Most 
of the parameters and decision variables are 
usually unknown or replaced with interval 
estimates based on references or experts’ 
opinions [Chen, 2005a; 2005b; Li et al., 2006; 
He et al., 2009; Cao et al., 2011]. Although 
various types of uncertainty have been discussed 
in the literature, there has been no study 
investigating the feasibility of handling both 
types of fuzzy, probabilistic and interval inputs 
in system optimization problems. The interval-
based FLP, uniform distribution, and Monte 
Carlo simulation would be integrated to 
simultaneously communicate fuzzy, interval, 
and stochastic uncertainties caused by imprecise 
information, subjective judgment, and variable 
environmental conditions into the optimization 
process. Therefore, in this paper, a stochastic 
simulation-based hybrid interval fuzzy 
programming (SHIFP) approach is developed 
to aid the decision-making process by solving 
fuzzy linear optimization problems. Fuzzy set 
theory, probability theory, and interval analysis 
are combined to provide decision makers with 
a better understanding of the impact of their 
decisions. A case study related to recovered 
oily water treatment during offshore oil spill 
clean-up operations is conducted to illustrate 
the feasibility of the SHIFP approach.

METHODOLOGY

In a decision process using the traditional FLP 
model, coefficients and variables may be 
fuzzy, instead of precisely given numbers as in 
crisp linear programming models. Consider the 
following FLP problem with fuzzy variables 
and fuzzy constraints:

   	 (1)

   	 (2)

   	 (3)
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Step 5: Examine the constraints to ensure the 
validity of       . If any constraint is not satisfied, 
then      need to be regenerated.

Step 6: The objective function is calculated as
     using feasible      and further compared 
with the current best value     . If      >    , then 
    should be replaced with      , otherwise 
is discarded.

Step 7: Repeat Steps 4 through 6 for a preset 
number of replications (e.g., 1,000, 5,000) to 
obtain the maximum objective function as a 
triangular fuzzy number in terms of each set 
of      and     . The centre of gravity method is 
used to defuzzify the fuzzy objective function 
into a crisp value [Van Broekhoven and De 
Baets, 2006].

where a and c are the minimum and maximum 
bounds of fuzzy number    ; and      is the 
membership function.
 
Step 8: Repeat Steps 3 through 7 for a preset 
number of replications (e.g., 1,000, 5,000). 
The defuzzified maximum objective function 
can be obtained as a probability distribution 
function in order to reflect the inherent 
uncertainty in the optimization process. 

CASE STUDY

The objective of this case study is to examine 
the effectiveness of the proposed SHIFP 
approach in handling various uncertainties in 
the system optimization process. A hypothetic 

the optimization results can be obtained as a 
probability distribution. The detailed algorithm 
can be summarized as follows:

Step 1: Assign triangular fuzzy numbers to  
and crisp values to      based on literature 
review or subjective opinions. It is noted  
that      are treated as real numbers because the 
intervals                are used to generate 
random fuzzy numbers.

Step 2: Review literature and collect expert 
opinions about the values of constraint and 
objective function coefficients which can be 
either intervals or discrete numbers. Set the 
minimum and maximum bounds for each 
coefficient such that uniform distributions  
can be assumed within the bounds. 

Step 3: Sobol quasi-random numbers of uniform 
distribution are generated in sets of three (i.e., 
left spread, right spread, and vertex point) and 
bounded between 0 and 1. Equation 4 is then 
applied to convert the random numbers from 
unit interval [0, 1] to the preset intervals of 
each coefficient (i.e.,     and     ). It should be 
satisfied that left spread ≤ vertex ≤ right spread 
to ensure the triangular shape.

where Random represents the random numbers 
for the left, right, and vertex points of      and 
    ; min and max are the minimum and 
maximum bounds determined in Step 2, 
respectively; and urnd are Sobol quasi-random 
numbers of uniform distribution.

Step 4: As with Step 3, for each specific set of 
     and     , random triangular fuzzy numbers 
are generated for       and bounded between 0 
and      .

   	 (4)

	 (5)
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where     is the total daily treatment capacity 
which needs to be maximized (tons/day);  
are the hourly treatment capacities of each 
facility;       and      are the daily operation 
hours and the total numbers of each facility, 
respectively;     and      are the operation and 
maintenance (O&M) and transportation costs, 
respectively;     are the selling prices of 
recovered bunker oil from each facility;  
is the maximum daily total budget (in CAD) 
which was set by the local authority as 
(110,000 130,000 150,000); and      are the 
maximum daily operation hours of each facility, 
in other words, the upper bounds of each 
decision variable. Various intervals and point 
values were collected by reviewing literature 
on previously identified databases, referring to 
existing contingency plans, and consulting 
experts. The corresponding lower and upper 
bounds of the coefficients and decision variables 
were either assumed for computational simplicity 
or determined by choosing the maximum and 
minimum values of these source data (Table 1). 
It should be noted that the number of Monte 
Carlo iterations used for this case study was 
determined as 1,000 by taking time constraints 
and the efficiency of convergence into account.

case of oil spill was assumed to occur in the 
North Atlantic nearshore of Newfoundland and 
Labrador. An estimated total of 50,000 tons of 
bunker oil was accidentally spilled and needed 
to be cleaned up. Numerous weir skimmers 
and drum skimmers were employed to collect 
spilled oil which was more or less blended 
with seawater. The local authority had a 
number of incineration barges, vacuum trucks, 
centrifugal separators, and temporary storage 
facilities to treat the recovered oily water. The 
objective was to maximize the treatment 
capacity of recovered oily water on a daily 
basis in order to reduce environmental risks. 
The main constraint was associated with the 
costs encountered in the treatment processes 
such that the total net cost should not exceed a 
given limit. The decision variables were chosen 
as the daily operation hours of each treatment 
facility by which decision makers could arrange 
the schedule for clean-up action.

subject to:

	 (6)

	 (7)

	 (8)

Table 1: Detailed description of treatment facilities of recovered oily water.
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Figure 1: Probability 
distributions of the 
lower bound, vertex 
point, upper bound, and 
defuzzified centroid of 
the objective function.

Figure 2: Probability 
density estimates of 
the lower bound, vertex 
point, upper bound, and 
defuzzified centroid of 
the objective function.

Figure 3: Normal probability 
plot of the centroid of the 
objective function.
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RESULTS AND DISCUSSION

The histograms in Figure 1 depict that the 
distributions of the lower bounds, vertex 
points, and upper bounds of the maximized 
objective function were all close to the normal 
distribution. However, the results from the 
Lilliefors test, which is a two-sided goodness-
of-fit test of normality, suggested that the null 
hypothesis of their normal distribution was 
rejected at a significance level of 5%. The 
offset of lower bounds and upper bounds 
towards the vertex points implies that the 
optimization results tended to concentrate in 
the range of 2,000-4,500 tons. These findings 
can be further demonstrated in Figure 2 by 
using the kernel-smoothing method to plot the 
probability density estimates. Another 
interesting finding is that the distribution of 
the defuzzified optimization results was well 
fitted by the normal distribution with a mean 
value of 3,352 tons and a standard deviation of 
155.4 tons. The Lilliefors test cannot reject the 
null hypothesis that the centroid distribution 
was normal at a significance level of 5%. Its 
normality was further evaluated and confirmed 
by the normal probability plot as shown in 
Figure 3. In this case study, the results 
revealed that the maximum daily treatment 
capacity was likely to range from 3,000-3,700 
tons given the budget constraint. In other 
words, from the technical perspective, it 
induces that oil skimmers are not 
recommended to operate if the amount of 
recovered oily water exceeds the treatment 
capacity unless other treatment or storage 
facilities are available.

Figures 4 and 5 show the lower bounds, upper 
bounds, vertex points, and centroids of the 
stochastically generated fuzzy numbers with 

regard to the coefficient of O&M cost of 
incineration barge. The lower and upper 
bounds mostly appeared at the edges of the 
predefined interval (100, 500), indicating that 
the support of random fuzzy numbers tended 
to be wider rather than concentrating around 
the middle value. Based on the Lilliefors test 
at the 5% significance level, its centroid 
distribution well fitted the normal distribution 
with a mean value of 299.8 CAD/hr and a 
standard deviation of 89.5 CAD/hr which are 
also reported in the corresponding normal 
probability plot (Figure 6). This finding 
elucidates that producing a random sequence 
of triangular fuzzy numbers in a given interval 
is equivalent to a normal distribution when 
using the centroid defuzzification method. It is 
worth noting that, if Figure 2 is compared with 
Figure 4, the centroids of both the random 
fuzzy coefficients and the fuzzy optimal 
solutions obey the normal distribution. The 
normality seems to be able to propagate 
throughout the optimization process, yet this 
interesting finding deserves more in-depth 
study and needs more rigorous mathematical 
proof to validate its applicability and feasibility.

Another interesting point to discuss is that the 
shapes of the fuzzy decision variables, 
corresponding to the maximized objective 
function, can be categorized into groups 
(Figure 7). For each set of the random 
coefficients, Monte Carlo simulation randomly 
generated fuzzy decision variables, validated 
the constraints, and found and recorded the 
particular group of decision variables that led 
to the maximum objective function. The above 
procedure was repeated 1,000 times such that 
1,000 groups of decision variables were 
obtained. It should be noted that the optimal 
decision variables appeared repeatedly in 
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Figure 4: Probability 
density estimates of 
the lower bound, vertex 
point, upper bound, and 
defuzzified centroid 
of the O&M cost of 
incineration barge.

Figure 5: Probability 
distributions of the 
lower bound, vertex 
point, upper bound, and 
defuzzified centroid 
of the O&M cost of 
incineration barge.

Figure 6: Normal 
probability plot of the 
centroid of the O&M cost 
of incineration barge.
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seven different shapes as shown in Figure 7. 
The percentages listed in the legend illustrate 
how many times each shape was referred to in 
1,000 optimization runs. For example, in 
Figures 7a-7d, the four triangular fuzzy 
numbers (TFN) (i.e., operation hours of the 
incineration barges, vacuum trucks, centrifugal 
separators, and temporary storage facilities) 
whose minimum, maximum, and vertex points 
are marked with triangles, were selected as the 
optimal variables in 60.6% of the total runs 
(i.e., 606 out of 1,000). This can be further 
interpreted as saying that, if the operation 
hours can be determined within the range of 
the TFNs marked by the triangles (e.g., (4, 11) 
in Figure 7a), the probability of achieving 
maximum treatment capacity would be 60.6% 
under the condition of uncertain coefficients. 
Moreover, the fuzzy outputs can help the 

decision makers choose other compromising 
points rather than the vertex points (e.g., 
Figure 7a, TFN (4, 4.2, 11), vertex point 4.2) 
and provide them with the corresponding 
possibility of getting the maximum treatment 
capacity (i.e., possibility of the vertex points is 
1 and decreases along both sides as shown in 
Figure 7). Contrastingly, in Figures 7a-7d, 
another four TFNs marked by circles denote 
that in 24.7% of the replications (i.e., 247 out 
of 1,000), the objective function was maximized 
by setting decision variables in these shapes. 
This particular setting might also be considered 
as viable when the primary choice (settings 
with 60.6% probability) can not be applied due 
to safety or technical concerns.

These interesting findings are believed to have 
important and broader implications relating to 

Figure 7: Optimal solutions of operation hours of each treatment facility.
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oil spill clean-up such that decision makers 
can wisely allocate limited resources with 
higher confidence in a short period of time. 
This is particularly true for harsh environments 
where available resources are usually in short 
supply and extreme weather conditions are 
likely to create more uncertainty in estimating 
the associated costs and time. In addition, from  
the ecological prospective, harsh environments 
tend to have more vulnerable ecosystems and 
shorter food chains than those in the low-
latitude regions. Therefore, making quick and 
sound decisions will not only help reduce the 
oil spill clean-up cost but also minimize 
environmental risks.

CONCLUSIONS

The clean-up of offshore oil spills is often subject 
to many constraints and the recovered oily water 
needs additional treatment in order to meet the 
stringent environmental regulations. Much of 
the literature indicated that the transportation 
and treatment of recovered oily water usually 
requires a large number of personnel and 
equipment. Good planning can help manage 
the scheduled tasks within the shortest time 
period to minimize costs and associated 
environmental impacts. However, the existence 
of different types of uncertainties due to 
imprecise information, subjective judgment, 
and variable environmental conditions may 
complicate the planning process. In this study, 
a stochastic SHIFP approach was developed  
to tackle uncertainties inherent in the decision- 
making environment. As with the traditional 
FLP, fuzzy set theory was used to model 
uncertainty such that the results would provide 
the decision makers more flexibility for the 
choice of the solution. Uniform interval 
distribution was assumed due to the lack of 

precise information on both coefficients and 
variables. A case study related to recovered oily 
water treatment during offshore oil spill clean-up 
operations was conducted to test the proposed 
approach. The results demonstrated that the 
objective function (maximum daily treatment 
capacity), if defuzzified by the centroid 
defuzzification technique, was likely to follow 
the normal distribution within the range from 
3,000 to 3,700 tons. In addition, the shapes of 
the fuzzy decision variables, corresponding to 
the maximized objective function, can be 
categorized into seven groups with different 
probability such that decision makers can more 
confidently allocate limited resources. This is 
particularly true for harsh environments where 
available resources are usually in short supply 
and extreme weather conditions are likely to 
create more uncertainty in estimating the 
associated costs and time. Emergency planners 
and administrators are expected to benefit from 
this study by gaining an insight into how to 
wisely allocate resources in responding to an 
offshore oil spill. Future research can be more 
fruitful if the oil weathering process can be 
integrated into this framework using dynamic 
optimization techniques.
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