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a b s t r a c t

The syntactic complexity of a regular language is the cardinality of its syntactic semigroup.
The syntactic complexity of a subclass of the class of regular languages is the maximal
syntactic complexity of languages in that class, taken as a function of the state complexity n
of these languages. We study the syntactic complexity of prefix-, suffix-, bifix-, and factor-
free regular languages. We prove that nn−2 is a tight upper bound for prefix-free regular
languages. We present properties of the syntactic semigroups of suffix-, bifix-, and factor-
free regular languages, conjecture tight upper bounds on their size to be (n−1)n−2

+(n−2),
(n − 1)n−3

+ (n − 2)n−3
+ (n − 3)2n−3, and (n − 1)n−3

+ (n − 3)2n−3
+ 1, respectively,

and exhibit languages with these syntactic complexities.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A language is prefix-free (respectively, suffix-free, factor-free) if it does not contain any pair of words such that one is a
proper prefix (respectively, suffix, factor) of the other. It is bifix-free if it is both prefix- and suffix-free. We refer to prefix-,
suffix-, bifix-, and factor-free languages as free languages. Nontrivial prefix-, suffix-, bifix-, and factor-free languages are also
known as prefix, suffix, bifix, and infix codes [1,23], respectively, and havemany applications in areas such as cryptography,
data compression and information processing.

The state complexity of a regular language is the number of states in the minimal deterministic finite automaton (DFA)
recognizing that language. An equivalent notion is that of quotient complexity, which is the number of left quotients of the
language. State complexity of regular operations has been studied quite extensively; for surveys of this topic and lists of
references we refer the reader to [3,25]. With regard to the state complexity of free regular languages, Han, Salomaa and
Wood [11] examined prefix-free regular languages, and Han and Salomaa [10] studied suffix-free regular languages. Bifix-
and factor-free regular languages were studied by Brzozowski et al. [4].

The notion of quotient complexity can be derived from the Nerode right congruence [18], while the Myhill
congruence [17] leads to the syntactic semigroup of a language and to its syntactic complexity, which is the cardinality of the
syntactic semigroup. It was pointed out in [6] that syntactic complexity can be very different for regular languages with the
same quotient complexity. Thus, for a fixed n, languages with quotient complexity nmay possibly be distinguished by their
syntactic complexities.
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In contrast to state complexity, syntactic complexity has not receivedmuch attention. In 1970,Maslov [15] statedwithout
proof that nn was a tight upper bound on the number of transformations performed by a DFA of n states; this number is the
same as the syntactic complexity of the language of the DFA [16]. In 2003–2004, Holzer and König [12], and Krawetz et al.
[14] studied the syntactic complexity of unary and binary languages. In 2010, Brzozowski and Ye [6] examined the syntactic
complexity of ideal and closed regular languages, and in 2011, Brzozowski and Li [5] studied the syntactic complexity of
star-free languages. Here, we deal with the syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages,
and their complements.

Basic definitions and facts are stated in Sections 2 and 3. In Section 4, we obtain a tight upper bound on the syntactic
complexity of prefix-free regular languages. In Section 5–7, we study the syntactic complexity of suffix-, bifix-, and factor-
free regular languages, respectively. We state conjectures about tight upper bounds for these classes, and exhibit languages
in these classes that have large syntactic complexities. In Section 8, we show that the upper bounds on the quotient
complexity of reversal of prefix-, suffix-, bifix-, and factor-free regular languages can be met by our languages with largest
syntactic complexities. Section 9 concludes the paper.

2. Transformations

A transformation of a set Q is a mapping of Q into itself. In this paper, we consider only transformations of finite sets, and
we assume without loss of generality that Q = {1, 2, . . . , n}. Let t be a transformation of Q . If i ∈ Q , then it is the image
of i under t . If X is a subset of Q , then Xt = {it | i ∈ X}, and the restriction of t to X , denoted by t|X , is a mapping from X
to Xt such that it|X = it for all i ∈ X . The composition of two transformations t1 and t2 of Q is a transformation t1 ◦ t2 such
that i(t1 ◦ t2) = (it1)t2 for all i ∈ Q . We usually drop the composition operator ‘‘◦’’ and write t1t2 for short. An arbitrary
transformation can be written in the form

t =


1 2 · · · n − 1 n
i1 i2 · · · in−1 in


,

where ik = kt , 1 6 k 6 n, and ik ∈ Q . The domain dom(t) of t is Q . The range rng(t) of Q under t is the set rng(t) = Qt. We
also use the notation t = [i1, i2, . . . , in] for the transformation t above.

A permutation of Q is a mapping of Q onto itself. In other words, a permutation π of Q is a transformation where
rng(π) = Q . The identity transformation maps each element to itself, that is, it = i for i = 1, . . . , n. A transformation
t is a cycle of length k if there exist pairwise different elements i1, . . . , ik such that i1t = i2, i2t = i3, . . . , ik−1t = ik, and
ikt = i1. A cycle is denoted by (i1, i2, . . . , ik). For i < j, a transposition is the cycle (i, j). A singular transformation, denoted
by

i
j


, has it = j and ht = h for all h ≠ i. A constant transformation, denoted by

Q
j


, has it = j for all i.

The set of all permutations of a set Q of n elements is a group, denoted by SQ and called the symmetric group of degree
n. Piccard [19] showed in 1935 that two generators are sufficient to generate the symmetric group of degree n.

Theorem 1 (Permutations). The symmetric groupSQ of size n! can be generated by any cyclic permutation of n elements together
with any transposition. In particular, SQ can be generated by c = (1, 2, . . . , n) and t = (1, 2).

The set of all transformations of a set Q , denoted by TQ , is a finite semigroup, in fact, a monoid. We refer the reader to the
book of Ganyushkin and Mazorchuk [8] for a detailed discussion of finite transformation semigroups. In 1935, Piccard [19]
proved that three transformations of Q are sufficient to generate the monoid TQ . In the same year, Eilenberg showed that
fewer than three generators are not possible, as reported by Sierpiński [24]. Dénes [7] (apparently unaware of the earlier
work) studied more general generators in 1968; we use his formulation.

Theorem 2 (Transformations). The complete transformation monoid TQ of size nn can be generated by any cyclic permutation
of n elements together with any transposition and any singular transformation. In particular, TQ can be generated by c =

(1, 2, . . . , n), t = (1, 2) and r =
n
1


.

3. Quotient complexity and syntactic complexity

If Σ is a non-empty finite alphabet, then Σ∗ is the free monoid generated by Σ , and Σ+ is the free semigroup generated
by Σ . A word is any element of Σ∗, and the empty word is ε. The length of a word w ∈ Σ∗ is |w|. A language over Σ is any
subset of Σ∗. If w = uxv for some u, x, v ∈ Σ∗, then u is a prefix of w, v is a suffix of w, and x is a factor of w. Both u and v
are also factors of w. A proper prefix (suffix, factor) of w is a prefix (suffix, factor) of w other than w.

The left quotient, or simply quotient, of a language L by awordw is the language Lw = {x ∈ Σ∗
| wx ∈ L}. For any L ⊆ Σ∗,

the Nerode right congruence [18] ∼L of L is defined as follows: For all x, y ∈ Σ∗,

x ∼L y if and only if xv ∈ L ⇔ yv ∈ L, for all v ∈ Σ∗.

Clearly, Lx = Ly if and only if x ∼L y. Thus each equivalence class of this right congruence corresponds to a distinct quotient
of L.
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TheMyhill congruence [17] ≈L of L is defined as follows: For all x, y ∈ Σ∗,

x ≈L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗.

This congruence is also knownas the syntactic congruence of L. The quotient setΣ+/ ≈L of equivalence classes of the relation
≈L is a semigroup called the syntactic semigroup of L, andΣ∗/ ≈L is the syntactic monoid of L. The syntactic complexity σ(L)
of L is the cardinality of its syntactic semigroup. Themonoid complexity µ(L) of L is the cardinality of its syntactic monoid. If
the equivalence class containing ε is a singleton in the syntactic monoid, then σ(L) = µ(L) − 1; otherwise, σ(L) = µ(L).

A deterministic finite automaton (DFA) is a quintuple A = (Q , Σ, δ, q1, F), where Q is a finite, non-empty set of states, Σ
is a finite non-empty alphabet, δ : Q × Σ → Q is the transition function, q1 ∈ Q is the initial state, and F ⊆ Q is the set of
final states. We extend δ to Q ×Σ∗ in the usual way. The DFA A accepts a word w ∈ Σ∗ if δ(q1, w) ∈ F . The set of all words
accepted by A is L(A). By the language of a state q of A wemean the language accepted by the DFA (Q , Σ, δ, q, F). A state is
empty if its language is empty.

Let L be a regular language. The quotient DFA of L is A = (Q , Σ, δ, q1, F), where Q = {Lw | w ∈ Σ∗
}, δ(Lw, a) = Lwa,

q1 = Lε = L, F = {Lw | ε ∈ Lw}. A quotient Lw is final if ε ∈ Lw . The number κ(L) of distinct quotients of L is the
quotient complexity of L. The quotient DFA of L is the minimal DFA accepting L, and so quotient complexity is the same as
state complexity. The quotient viewpoint is often useful for deriving upper bounds, while the state approach may be more
convenient for proving lower bounds.

In terms of automata, each equivalence class [w] ∼L of ∼L is the set of all words w that take the automaton to the
same state from the initial state, and each equivalence class [w] ≈L of ≈L is the set of all words that perform the same
transformation on the set of states [16]. In terms of quotients, [w] ∼L is the set of wordsw that can be followed by the same
quotient Lw .

Let A = (Q , Σ, δ, q1, F) be a DFA. For each word w ∈ Σ+, the transition function for w defines a transformation tw
of Q by the word w: for all i ∈ Q , itw

def
= δ(i, w). The set TA of all such transformations by non-empty words forms a

subsemigroup of TQ , called the transition semigroup of A [20]. Conversely, we can use a set {ta | a ∈ Σ} of transformations
to define δ, and so the DFA A. When the context is clear we simply write a = t , where t is a transformation of Q , to mean
that the transformation performed by a ∈ Σ is t .

If A is the quotient DFA of L, then TA is isomorphic to the syntactic semigroup TL of L [16], and we represent elements of
TL by transformations in TA.

We attempt to obtain tight upper bounds on the syntactic complexity σ(L) = |TL| of L as a function of the quotient
complexity κ(L) of L. First we consider the syntactic complexity of regular languages over a unary alphabet, where the
concepts prefix-, suffix-, bifix-, and factor-free, coincide. So we may consider only unary prefix-free regular languages L
with quotient complexity κ(L) = n. When n = 1, the only prefix-free language is L = ∅ with σ(L) = 1. For n > 2, a
prefix-free language L must be a singleton, L = {an−2

}. The syntactic semigroup TL of L consists of n − 1 transformations tw
by words w = ai, where 1 6 i 6 n − 1. Thus we have

Proposition 3 (Unary Free Regular Languages). If L is a unary free regular language with κ(L) = n > 2, then σ(L) = n − 1.

The tight upper bound for regular unary languages [12] is n.
We assume that |Σ | > 2 in the following sections. Since the syntactic semigroup of a language is the same as that of

its complement, we deal only with prefix-, suffix-, bifix-, and factor-free languages. All the syntactic complexity results,
however, apply also to the complements of these languages.

4. Prefix-free regular languages

To simplify notationwewrite ε for the language {ε}. Recall that a regular language L is prefix-free if and only it has exactly
one final quotient, and that quotient is ε [11].

Theorem 4 (Prefix-Free Regular Languages). If L is regular and prefix-free with κ(L) = n > 2, then σ(L) 6 nn−2. Moreover, this
bound is tight for n = 2 if |Σ | > 1, for n = 3 if |Σ | > 2, for n = 4 if |Σ | > 4, and for n > 5 if |Σ | > n + 1.

Proof. If L is prefix-free, the only final quotient of L is ε. Thus L also has the empty quotient, since εa = ∅ for a ∈ Σ . Let
A = (Q , Σ, δ, 1, {n − 1}) be the quotient DFA of L, where, without loss of generality, n − 1 ∈ Q is the only final state, and
n ∈ Q is the empty state. For any transformation t ∈ TL, (n − 1)t = nt = n. Thus we have σ(L) 6 nn−2.

The only prefix-free regular language for n = 1 is L = ∅ with σ(L) = 1; here the bound nn−2 does not apply. For n = 2
and Σ = {a}, the language L = ε meets the bound. For n = 3 and Σ = {a, b}, L = b∗ameets the bound. For n > 4, let

An = ({1, 2, . . . , n}, {a, b, c, d1, d2, . . . , dn−2}, δ, 1, {n − 1}),

where a =
n−1

n


(1, 2, . . . , n − 2), b =

n−1
n


(1, 2), c =

n−1
n

n−2
1


, and di =

n−1
n

 i
n−1


for i = 1, 2, . . . , n − 2. DFA A6 is

shown in Fig. 1, where Γ = {d1, d2, . . . , dn−2}. For n = 4, input a coincides with b; hence only 4 inputs are needed.
Any transformation t ∈ TL has the form

t =


1 2 · · · n − 2 n − 1 n
i1 i2 · · · in−2 n n


,
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Fig. 1. Quotient DFA A6 of prefix-free regular language with 1,296 transformations.

where ik ∈ {1, 2, . . . , n} for 1 6 k 6 n − 2. There are three cases:
1. If ik 6 n − 2 for all k, 1 6 k 6 n − 2, then by Theorem 2, An can do t .

2. If ik 6 n − 1 for all k, 1 6 k 6 n − 2, and there exists some h such that ih = n − 1, then there exists some j, 1 6 j 6 n − 2
such that ik ≠ j for all k, 1 6 k 6 n − 2. For all 1 6 k 6 n − 2, define i′k as follows: i′k = j if ik = n − 1, and i′k = ik if
ik ≠ n − 1. Let

s =


1 2 · · · n − 2 n − 1 n
i′1 i′2 · · · i′n−2 n n


.

By Case 1 above, An can do s. Since t = sdj, An can do t as well.

3. Otherwise, there exists some h such that ih = n. Then there exists some j, 1 6 j 6 n − 2, such that ik ≠ j for all k,
1 6 k 6 n − 2. For all 1 6 k 6 n − 2, define i′k as follows: i′k = n − 1 if ik = n, i′k = j if ik = n − 1, and i′k = ik otherwise.
Let s be as above but with new i′k. By Case 2 above, An can do s. Since t = sdj, An can do t as well.

Therefore, the syntactic complexity of An meets the desired bound. �

We conjecture that the alphabet sizes cannot be reduced. As shown in Table 2, we have verified this conjecture for n 6 5
by enumerating all prefix-free regular languages with n 6 5 using GAP [9].

5. Suffix-free regular languages

For any regular language L, a quotient Lw is uniquely reachable [3] if Lw = Lx implies that w = x. It is known from [10]
that, if L is a suffix-free regular language, then L = Lε is uniquely reachable by ε, and L has the empty quotient. Without
loss of generality, we assume that 1 is the initial state, and n is the empty state in the quotient DFA of L. We will show that
the cardinality of Bsf(n), defined below, is an upper bound (B for ‘‘bound’’) on the syntactic complexity of suffix-free regular
languages with quotient complexity n. For n > 2, let

Bsf(n) = {t ∈ TQ | 1 ∉ rng(t), nt = n, and for all j > 1, 1t j = n or 1t j ≠ it j ∀i, 1 < i < n}.

Proposition 5. If L is a regular language with quotient DFA An = (Q , Σ, δ, 1, F) and syntactic semigroup TL, then the following
hold:
1. If L is suffix-free, then TL is a subset of Bsf(n).
2. If L has the empty quotient, only one final quotient, and TL ⊆ Bsf(n), then L is suffix-free.
Proof. 1. Let L be suffix-free, and let An be its quotient DFA. Consider an arbitrary t ∈ TL. Since the quotient L is uniquely
reachable, it ≠ 1 for all i ∈ Q . Since the quotient corresponding to state n is empty, nt = n. Since L is suffix-free, for any
two quotients Lw and Luw , where u, w ∈ Σ+ and Lw ≠ ∅, we must have Lw ∩ Luw = ∅, and so Lw ≠ Luw . This means that,
for any j > 1, if 1t j ≠ n, then 1t j ≠ it j for all i, 1 < i < n. So t ∈ Bsf(n), and TL ⊆ Bsf(n).

2. Assume that TL ⊆ Bsf(n), and let f be the only final state. If L is not suffix-free, then there exist non-empty words u and
v such that v, uv ∈ L. Let tu and tv be the transformations by u and v, and let i = 1tu; then i ≠ 1. Assume without loss the
generality that n is the empty state. Then f ≠ n, and we have 1tv = f = 1tuv = 1tutv = itv , which contradicts the fact that
tv ∈ Bsf(n). Therefore L is suffix-free. �

Let bsf(n) = |Bsf(n)|. We now prove that bsf(n) is an upper bound on the syntactic complexity of suffix-free regular
languages.

With each transformation t of Q , we associate a directed graph Gt , where Q is the set of nodes, and (i, j) ∈ Q × Q is
a directed edge from i to j if it = j. We call such a graph Gt the transition graph of t . For each node i, there is exactly one
edge leaving i in Gt . Consider the infinite sequence i, it, it2, . . . for any i ∈ Q . Since Q is finite, there exists least j > 0 such
that it j+1

= it j
′

for some j′ 6 j. Then the finite sequence st(i) = i, it, . . . , it j contains all the distinct elements of the above
infinite sequence, and it induces a directed path Pt(i) from i to it j in Gt . In particular, if n ∈ st(1), and nt = n, then we call
st(1) the principal sequence of t , and Pt(1), the principal path of Gt .
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Table 1
The number Sm(h) of labeled rooted trees with m nodes
and height at most h.

h/m 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0
1 1 2 3 4 5 6 7
2 1 2 9 40 205 1176 7399
3 1 2 9 64 505 4536 46249
4 1 2 9 64 625 7056 89929
5 1 2 9 64 625 7776 112609
6 1 2 9 64 625 7776 117649

Proposition 6. There exists a principal sequence for every transformation t ∈ Bsf(n).

Proof. Suppose t ∈ Bsf(n) and st(1) = 1, 1t, . . . , 1t j. If t does not have a principal sequence, then n ∉ st(1), and
1t j+1

= 1t j
′

≠ n for some j′ 6 j. Let i = 1t j+1−j′ ; then i ≠ 1 and 1t j
′

= it j
′

, violating the last property of Bsf(n). Therefore
there is a principal sequence for every t ∈ Bsf(n). �

Fix a transformation t ∈ Bsf(n). Let i ∈ Q be such that i ∉ st(1). If the sequence st(i) does not contain any element of the
principal sequence st(1) other than n, then we say that st(i) has no principal connection. Otherwise, there exists least j > 1
such that 1t j ≠ n and 1t j = it j

′

∈ st(i) for some j′ > 1, and we say that st(i) has a principal connection at 1t j. If j′ < j, the
principal connection is short; otherwise, it is long.

Lemma 7. For all t ∈ Bsf(n) and i ∉ st(1), the sequence st(i) has no long principal connection.

Proof. Let t be any transformation in Bsf(n). Suppose for some i ∉ st(1), the sequence st(i) has a long principal connection
at 1t j = it j

′

≠ n, where j 6 j′. Hence it j
′
−j

≠ n, and 1t j = (it j
′
−j)t j, which is a contradiction. Therefore, for all i ∉ st(1), st(i)

has no long principal connection. �

To calculate the cardinality of Bsf(n), we need the following observation.

Lemma 8. For all t ∈ Bsf(n) and i ∉ st(1), if st(i) has a principal connection, then there is no cycle incident to the path Pt(i) in
the transition graph Gt .

Proof. This observation can be derived from Theorem 1.2.9 of [8]. However, our proof is shorter. Pick any i ∉ st(1) such
that st(i) has a principal connection at 1t j = it j

′

for some i, j and j′. Then the sequence st(i) contains n, and the path Pt(i)
does not contain any cycle. Suppose C is a cycle which includes node x = itk ∈ Pt(i). Since there is only one outgoing edge
for each node in Gt , the cycle C must be oriented and must contain a node x′

∉ Pt(i) such that (x′, x) is an edge in C . Then
the next node in the cycle must be itk+1 since there is only one outgoing edge from x. But then x′ can never be reached from
Pt(i), and so no such cycle can exist. �

By Lemma 8, for any 1t j ∈ st(1), where j > 1, the union of directed paths from various nodes i to 1t j, if i ∉ st(1) and st(i)
has a principal connection at 1t j, forms a labeled tree Tt(j) rooted at 1t j. Suppose there are rj + 1 nodes in Tt(j) for each j,
and suppose there are r elements of Q that are not in the principal sequence st(1) nor in any tree Tt(j), for some rj, r > 0.
Note that, 1t j is the only node in Tt(j) that is also in the principal sequence st(1). Each tree Tt(j) has height at most j − 1;
otherwise, some i ∈ Tt(j) has a long principal connection. In particular, tree Tt(1) has height 1; so it is trivial with only one
node 1t . Then r1 = 0, andwe need to consider trees Tt(j) only for j > 2. Let Sm(h) be the number of labeled rooted trees with
m nodes and height at most h. This number can be found in the paper of Riordan [21]; the calculation is somewhat complex,
and we refer the reader to [21] for details. For convenience, we include the values of Sm(h) for small values of m and h in
Table 1, where the row number is h and the column number ism.

Since each of the m nodes can be the root, there are S ′
m(h) =

Sm(h)
m labeled trees rooted at a fixed node and having m

nodes and height at most h. The following is an example of trees Tt(j) in transformations t ∈ Bsf(n).

Example 9. Let n = 15. Consider any transformation t ∈ Bsf(15) with principal sequence st(1) = 1, 2, 3, 4, 5, 15. There are 9
elements of Q that are not in st(1), and some of them are in the trees Tt(j) for 2 6 j 6 4. Consider the cases where r2 = 2, r3 = 3,
r4 = 1, and r = 3. Fig. 2 shows one such transformation t.

For j = 2, the tree Tt(2) has height at most 1, and there are S ′

r2+1(1) =
Sr2+1(1)
r2+1 =

3
3 = 1 possible Tt(2). For j = 3, there are

S ′

r3+1(2) =
Sr3+1(2)
r3+1 = 10 possible Tt(3), which are of one of the three types shown in Fig. 3. Among the 10 possible Tt(3), one is

of type (a), three are of type (b), and six are of type (c). For j = 4, there are S ′

r4+1(3) =
Sr4+1(3)
r4+1 = 1 possible Tt(4).

Let Cn
k be the binomial coefficient, and let Cn

k1,...,km
be the multinomial coefficient. Then we have the following lemma.
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Fig. 2. Transition graph of some t ∈ Bsf(15) with principal sequence 1, 2, 3, 4, 5, 15.

a b c

Fig. 3. Three types of trees of the form Tt (3), where {i1, i2, i3} = {8, 9, 10}.

Lemma 10. For n > 2, we have

bsf(n) =

n−2
k=0

Cn−2
k k!


r2+···+rk+r

=n−k−2

Cn−k−2
r2,...,rk,r(r + 1)r

k
j=2

S ′

rj+1(j − 1). (1)

Proof. Let t be any transformation in Bsf(n). Suppose st(1) = 1, 1t, . . . , 1tk, n for some k, 0 6 k 6 n − 2. There are Cn−2
k k!

different principal sequences st(1). Now, fix st(1). Suppose n − k − 2 = r2 + · · · + rk + r , where, for 2 6 j 6 k, tree Tt(j)
contains rj + 1 nodes, for some rj > 0. There are Cn−k−2

r2,...,rk,r different tuples (r2, . . . , rk, r). Each tree Tt(j) has height at most

j−1, and it is rooted at 1t j. There are S ′

rj+1(j−1) =
Srj+1(j−1)

rj+1 different trees Tt(j). Let E be the set of the remaining r elements
x of Q that are not in any tree Tt(j) nor in the principal sequence st(1). The image xt can only be chosen from E ∪ {n}. There
are (r + 1)r different mappings of E. Altogether we have the desired formula. �

From Proposition 5 and Lemma 10 we have

Proposition 11. For n > 2, if L is a suffix-free language with quotient complexity n, then its syntactic complexity σ(L) satisfies
that σ(L) 6 bsf(n), where bsf(n) is the cardinality of Bsf(n), and it is given by Equation Eq. (1).

Note that Bsf(n) is not a semigroup for n > 4 because s1 = [2, 3, n, . . . , n, n], s2 = [n, 3, 3, . . . , 3, n] ∈ Bsf(n), but
s1s2 = [3, 3, n, . . . , n, n] ∉ Bsf(n). Hence, although bsf(n) is an upper bound on the syntactic complexity of suffix-free
regular languages, that bound is not tight. Our objective is to find the largest subset ofBsf(n) that is a semigroup. For n > 2, let

W65
sf (n) = {t ∈ Bsf(n) | for all i, j ∈ Q where i ≠ j, we have it = jt = n or it ≠ jt},

whereW stands for ‘‘witness’’, and the superscript 6 5 will be explained in Theorem 16.

Proposition 12. For n > 2, W65
sf (n) is a semigroup contained in Bsf(n), and its cardinality is

w65
sf (n) = |W65

sf (n)| =

n−1
k=1

Cn−1
k (n − 1 − k)!Cn−2

n−1−k.

Proof. We know that any t is in W65
sf (n) if and only if the following hold:

1. it ≠ 1 for all i ∈ Q , and nt = n;
2. for all i, j ∈ Q , such that i ≠ j, either it = jt = n or it ≠ jt .

Clearly W65
sf (n) ⊆ Bsf(n). For any transformation t1, t2 ∈ W65

sf (n), consider the composition t1t2. Since 1 ∉ rng(t2), we
have 1 ∉ rng(t1t2). We also have nt1t2 = nt2 = n. Pick any i, j ∈ Q such that i ≠ j. Suppose it1t2 ≠ n or jt1t2 ≠ n. If
it1t2 = jt1t2, then it1 = jt1 and thus i = j, a contradiction. Hence t1t2 ∈ W65

sf (n), and W65
sf (n) is a semigroup contained in

Bsf(n).
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Let t ∈ W65
sf (n) be any transformation. Note that nt = n is fixed. Let Q ′

= Q \ {n}, and Q ′′
= Q \ {1, n}. Suppose k

elements in Q ′ aremapped to n by t , where 0 6 k 6 n−1; then there are Cn−1
k choices of these elements. For the set D of the

remaining n− 1− k elements, which must be mapped by t to pairwise distinct elements of Q ′′, there are Cn−2
n−1−k(n− 1− k)!

choices for the mapping t|D. When k = 0, there is no such t since |Dt| = n − 1 > n − 2 = |Q ′′
|. Altogether, the cardinality

ofW65
sf (n) is |W65

sf (n)| =
n−1

k=1 C
n−1
k (n − 1 − k)!Cn−2

n−1−k. �

Remark 13. A partial injective transformation of a set Q is a partial injective mapping of Q into itself. The set of all such
transformations ofQ is a semigroup, usually called the symmetric inverse semigroup [8] and denoted by ISQ . LetQ ′

= Q \{n}.
The number w65

sf (n) coincides with the number of nilpotents in ISQ ′ , which are the transformations t ∈ ISQ ′ such that
dom(tk) = ∅ for some k > 1. Riordan [22] reported that w65

sf (n) has the asymptotic approximation

w65
sf (n) ∼

1
√
2e

(n − 1)n−
4
5 e−(n−1)+2

√
n−1.

We now construct a generating set G65
sf (n) (G for ‘‘generators’’) of size n for W65

sf (n), which will show that there exist
DFA’s accepting suffix-free regular languages with quotient complexity n and syntactic complexity w65

sf (n).

Proposition 14. When n > 2, the semigroupW65
sf (n) is generated by the following set G65

sf (n) of transformations of Q :

G65
sf (2) = {a1}, where a1 = [2, 2];

G65
sf (3) = {a1, a2}, where a1 = [3, 2, 3] and a2 = [2, 3, 3];

and for n > 4, G65
sf (n) = {a0, . . . , an−1}, where

• a0 =
1
n


(2, 3),

• a1 =
1
n


(2, 3, . . . , n − 1),

• for 2 6 i 6 n − 1, jai = j + 1 for j = 1, . . . , i − 1, iai = n, and jai = j for j = i + 1, . . . , n.

For n = 4, a0 and a1 coincide, and three transformations suffice.

Proof. We have G65
sf (n) ⊆ W65

sf (n), and so ⟨G65
sf (n)⟩, the semigroup generated by G65

sf (n), is a subset of W65
sf (n). We now

show thatW65
sf (n) ⊆ ⟨G65

sf (n)⟩.
It is easy to verify the cases for n = 2, 3. Assume n > 4. Pick any t inW65

sf (n). Note that nt = n is fixed. Let Q ′
= Q \ {n},

Et = {j ∈ Q ′
| jt = n}, Dt = Q ′

\ Et , and Q ′′
= Q \ {1, n}. Then Dt t ⊆ Q ′′, and |Et | > 1, since |Q ′′

| < |Q ′
|. We prove by

induction on |Et | that t ∈ ⟨G65
sf (n)⟩.

First, note that ⟨a0, a1⟩, the semigroup generated by {a0, a1}, is isomorphic to the symmetric group SQ ′′ by Theorem 1.
Consider Et = {i} for some i ∈ Q ′. Then iai = it = n. Moreover, since Dtai,Dt t ⊆ Q ′′, there exists π ∈ ⟨a0, a1⟩ such that
(jai)π = jt for all j ∈ Dt . Then t = aiπ ∈ ⟨G65

sf (n)⟩.
Assume that any transformation t ∈ W65

sf (n) with |Et | < k can be generated by G65
sf (n), where 1 < k < n − 1. Consider

t ∈ W65
sf (n) with |Et | = k. Suppose Et = {e1, . . . , ek−1, ek}. Let s ∈ W65

sf (n) be such that Es = {e1, . . . , ek−1}. By assumption,
s can be generated by G65

sf (n). Let i = eks; then i ∈ Q ′′, and ej(sai) = n for all 1 6 j 6 k. Moreover, we have Dt(sai) ⊆ Q ′′.
Thus, there exists π ∈ ⟨a0, a1⟩ such that, for all d ∈ Dt , d(saiπ) = dt . Altogether, for all ej ∈ Et , we have ej(saiπ) = ejt = n,
for all d ∈ Dt , d(saiπ) = dt , and n(saiπ) = nt = n. Thus t = saiπ , and t ∈ ⟨G65

sf (n)⟩.
ThereforeW65

sf (n) = ⟨G65
sf (n)⟩. �

Theorem 15. For n > 2, let An = (Q , Σ, δ, 1, {n − 1}) be a DFA with alphabet Σ , where each a ∈ Σ defines a distinct
transformation in G65

sf (n) as in Proposition 14. Then L = L(An) has quotient complexity κ(L) = n, and syntactic complexity
σ(L) = w65

sf (n). Moreover, L is suffix-free.

Proof. The cases for n = 2, 3 are easy to verify. Assume n > 4. First we show that all the states of An are reachable: 1 is the
initial state, state n is reached by a1, and for 2 ≤ i ≤ n − 1, state i is reached by ai−1

i . For 1 ≤ i ≤ n − 1, the word an−1−i
n−1 is

accepted only by state i. Also n is the empty state. Thus all the states of An are distinct, and κ(L) = n.
By Proposition 14, the syntactic semigroup of L is W65

sf (n); hence σ(L) = |W65
sf (n)| = w65

sf (n). By Proposition 5, L is
suffix-free. �

As shown in Table 2, the size of Σ cannot be decreased for n 6 5.

Theorem 16. For 2 6 n 6 5, if a suffix-free regular language L has quotient complexity κ(L) = n, then its syntactic complexity
satisfies that σ(L) 6 w65

sf (n), and this is a tight upper bound.
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Proof. By Proposition 5, the syntactic semigroup of a suffix-free regular language L is contained in Bsf(n). For n ∈ {2, 3},
w65

sf (n) = bsf(n). So w65
sf (n) is an upper bound, and it is met by the language L = ε for n = 2 and by L = ab∗ for n = 3.

For n = 4, we have |Bsf(4)| = 15 and |W65
sf (4)| = 13. Two transformations, s1 = [4, 2, 2, 4] and s2 = [4, 3, 3, 4], in

Bsf(4) are such that s1 conflicts with t1 = [3, 2, 4, 4] ∈ W65
sf (4) (because t1s1 = [2, 2, 4, 4] ∉ Bsf(4)), and s2 conflicts with

t2 = [2, 3, 4, 4] (because t2s2 = [3, 3, 4, 4] ∉ Bsf(4)). Thus σ(L) 6 13. Let L be the language accepted by the DFA A4 in
Theorem 15; then κ(L) = 4 and σ(L) = 13. So the bound is tight.

For n = 5, we have |Bsf(5)| = 115 and |W65
sf (5)| = 73. Suppose Bsf(5) \ W65

sf (5) = {s1, . . . , s42}. For each si, we
enumerated transformations in W65

sf (5) using GAP and found a unique ti ∈ W65
sf (5) such that the semigroup ⟨ti, si⟩ is not

contained in Bsf(5). Thus at most one transformation in each pair {ti, si} can appear in the syntactic semigroup of L. So we
reduce the upper bound to 73. By Theorem 15, this bound is tight. �

When n > 6, the semigroup W65
sf (n) is no longer the largest semigroup contained in Bsf(n); hence the upper bound in

Theorem 16 does not apply. In the following, we define and study another semigroup W>6
sf (n), which is larger than W65

sf (n)
and is also contained in Bsf(n). For n > 2, let

W>6
sf (n) = {t ∈ Bsf(n) | 1t = n or it = n ∀ i, 2 6 i 6 n − 1}.

Proposition 17. For n > 2, the set W>6
sf (n) is a semigroup contained in Bsf(n), and its cardinality is

w>6
sf (n) = |W>6

sf (n)| = (n − 1)n−2
+ (n − 2).

Proof. Pick any t1, t2 in W>6
sf (n). If 1t1 = n, then 1(t1t2) = n and t1t2 ∈ W>6

sf (n). If 1t1 ≠ n, then, for all i ∈ {2, . . . , n − 1},
it1 = n and i(t1t2) = n; so t1t2 ∈ W>6

sf (n) as well. Hence W>6
sf (n) is a semigroup contained in Bsf(n).

For any t ∈ W>6
sf (n), nt = n is fixed. There are two possible cases:

1. 1t = n: for each i ∈ {2, . . . , n − 1}, it can be chosen from {2, . . . , n}. Then there are (n − 1)n−2 different t ’s in this case.
2. 1t ≠ n: now 1t can be chosen from {2, . . . , n− 1}. For each i ∈ {2, . . . , n− 1}, it = n is fixed. Then, for any t ′ ∈ W>6

sf (n)
such that 1t ′ ≠ n, t differs from t ′ if and only if 1t ≠ 1t ′. So there are n − 2 different t ’s in this case.

Therefore w>6
sf (n) = (n − 1)n−2

+ (n − 2). �

When n > 6, one verifies that w>6
sf (n) > w65

sf (n). Hence W>6
sf (n) is a larger semigroup than W65

sf (n). Table 2 contains
values of w65

sf (n) and w>6
sf (n) for small n’s. For n ∈ {2, 3}, we have W>6

sf (n) = W65
sf (n). From now on, we are only interested

in larger values of n.

Proposition 18. For n > 4, the semigroupW>6
sf (n) is generated by the set G>6

sf (n) = {a1, a2, a3, b1, . . . , bn−2, c} of transforma-
tions of Q , where

• a1 =
1
n


(2, . . . , n − 1), a2 =

1
n


(2, 3), a3 =

1
n

n−1
2


;

• For 1 6 i 6 n − 2, bi =
1
n

i+1
n


;

• c =
Q\{1}

n

1
2


= [2, n, . . . , n].

For n = 4, a1 and a2 coincide, and five transformations suffice.

Proof. Clearly G>6
sf (n) ⊆ W>6

sf (n), and ⟨G>6
sf (n)⟩ ⊆ W>6

sf (n). We show in the following thatW>6
sf (n) ⊆ ⟨G>6

sf (n)⟩.
Let Q ′

= {2, . . . , n − 1}. By Theorem 2, a1, a2 and a3 together generate the semigroup

Y = {t ∈ W>6
sf (n) | for all i ∈ Q ′, it ∈ Q ′

},

which is isomorphic to TQ ′ and is contained inW>6
sf (n). Next, consider any t ∈ W>6

sf (n) \ Y. We have two cases:

1. 1t = n: Let Et = {i ∈ Q ′
| it = n}. Since t ∉ Y, Et ≠ ∅. Suppose Et = {i1, . . . , ik}, for some 1 6 k 6 n − 2. Then

there exists t ′ ∈ Y such that, for all i ∉ Et , it ′ = it . Let s = bi1−1 · · · bik−1. Note that Ets = {n}, and, for all i ∉ Et ,
i(t ′s) = (it ′)s = it . So t = t ′s ∈ ⟨G>6

sf (n)⟩.
2. 1t ≠ n: If 1t = 2, then t = c. Otherwise, 1t ∈ {3, . . . , n − 1} ⊆ Q ′, and we know from the above case that there exists

t ′ ∈ G>6
sf (n) such that 2t ′ = 1t . Then 1(ct ′) = 1t , and i(ct ′) = (ic)t ′ = n = it , for all i ∈ Q ′. Hence t = ct ′ ∈ ⟨G>6

sf (n)⟩.

Therefore ⟨a1, a2, a3, b1, . . . , bn−2, c⟩ = W>6
sf (n). �

Theorem 19. For n > 4, let A′
n = (Q , Σ, δ, 1, {2}) be a DFA with alphabet Σ = {a1, a3, b1, b2, c} if n = 4 or Σ =

{a1, a2, a3, b1, . . . , bn−2, c} if n > 5, where each letter defines a transformation as in Proposition 18. Then L′
= L(A′

n) is suffix-
free with quotient complexity κ(L′) = n and syntactic complexity σ(L′) = w>6

sf (n).
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Proof. First we show that κ(L′) = n. From the initial state, we can reach state 2 by c and state n by a1. From state 2 we
can reach state i, 3 6 i 6 n − 1, by ai−1

1 . So all the states in Q are reachable. The word c is accepted only by state 1. For
2 6 i 6 n− 1, the word an−i

1 is accepted only by state i. State n is the empty state, which rejects all words. Thus all the states
in Q are distinct.

By Proposition 18, the syntactic semigroup of L′ isW>6
sf (n), and σ(L′) = w>6

sf (n). Also L′ is suffix-free by Proposition 5. �

Theorem 20. If L is a suffix-free regular language with κ(L) = 6, then σ(L) 6 w>6
sf (6) = 629 and this is a tight bound.

Proof. Note that |Bsf(6)| = 1169 and |W>6
sf (6)| = 629. Suppose {s1, . . . , s540} = Bsf(6)\W>6

sf (6). For each i, we enumerated
transformations in W>6

sf (6) using GAP and found a unique ti ∈ W>6
sf (6) such that ⟨ti, si⟩ ⊈ Bsf(6). As in the proof of

Theorem 16, for each i, at most one transformation in {ti, si} can appear in the syntactic semigroup of L. Then we can reduce
the upper bound to 629. This bound is met by the language L′ in Theorem 19; so it is tight. �

We know that the upper bound on the syntactic complexity of suffix-free regular languages is achieved by the largest
semigroup contained in Bsf(n). We conjecture thatW>6

sf (n) is such a semigroup also for n > 7.

Conjecture 21 (Suffix-Free Regular Languages). If L is a suffix-free regular language with κ(L) = n > 7, then σ(L) 6 w>6
sf (n).

6. Bifix-free regular languages

Let L be a regular bifix-free language with κ(L) = n. From Sections 4 and 5 we have:

1. L has ε as a quotient, and this is the only final quotient;
2. L has ∅ as a quotient;
3. L as a quotient is uniquely reachable.

Let A be the quotient DFA of L, with Q as the set of states. We assume that 1 is the initial state, n − 1 corresponds to the
quotient ε, and n is the empty state. For n > 2, consider the set

Bbf(n) = {t ∈ Bsf(n) | (n − 1)t = n}.

The following is an observation similar to Proposition 5.

Proposition 22. If L is a regular language with quotient complexity n and syntactic semigroup TL, then the following hold:

1. If L is bifix-free, then TL is a subset of Bbf(n).
2. If ε is the only final quotient of L, and TL ⊆ Bbf(n), then L is bifix-free.

Proof. 1. Since L is suffix-free, TL ⊆ Bsf(n). Since L is also prefix-free, it has ε and ∅ as quotients. By assumption, n − 1 ∈ Q
corresponds to the quotient ε. Thus for any t ∈ TL, (n − 1)t = n, and so TL ⊆ Bbf(n).

2. Since ε is the only final quotient of L, L is prefix-free, and L has the empty quotient. Since TL ⊆ Bbf(n) ⊆ Bsf(n), L is
suffix-free by Proposition 5. Therefore L is bifix-free. �

Lemma 23. We have |Bbf(2)| = 1, and for n > 3, |Bbf(n)| = Mn + Nn, where

Mn =

n−2
k=1

Cn−3
k−1 (k − 1)!


r2+···+rk+r

=n−k−2

Cn−k−2
r2,...,rk,r(r + 1)r

k
j=2

S ′

rj+1(j − 1), (2)

Nn =

n−3
k=0

Cn−3
k k!


r2+···+rk+r

=n−k−3

Cn−k−3
r2,...,rk,r(r + 2)r

k
j=2

S ′

rj+1(j − 1). (3)

Proof. It is easy to see that Bsf(2) = {[2, 2]}. Assume n > 3. Let t be any transformation in Bbf(n). Suppose st(1) =

1, 1t, . . . , 1tk, n, where 0 6 k 6 n − 2. For 2 6 j 6 k, suppose tree Tt(j) contains rj + 1 nodes, for some rj > 0; then
there are S ′

rj+1(j − 1) different trees Tt(j). Let E be the set of elements of Q that are not in any tree Tt(j) nor in the principal
sequence st(1). Then there are two cases:

1. n − 1 ∈ st(1): Since (n − 1)t = n, we must have 1tk = n − 1, and k > 1. So there are Cn−3
k−1 (k − 1)! different st(1). Let

r = |E| = (n − k − 2) − (r2 + · · · + rk). Then there are Cn−k−2
r2,...,rk,r tuples (r2, . . . , rk, r). For any x ∈ E, its image xt can be

chosen from E ∪ {n}. Then the number of transformations t in this case isMn.
2. n − 1 ∉ st(1): Then k 6 n − 3, and there are Cn−3

k k! different st(1). Note that n − 1 ∈ E, and (n − 1)t = n is fixed. Let
r = |E \ {n − 1}| = (n − k − 3) − (r2 + · · · + rk). Then there are Cn−k−3

r2,...,rk,r tuples (r2, . . . , rk, r). For any x ∈ E \ {n − 1},
xt can be chosen from E ∪ {n}. Thus the number of transformations t in this case is Nn.

Altogether we have the desired formula. �
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Let bbf(n) = |Bbf(n)|. From Proposition 22 and Lemma 23 we have

Proposition 24. For n > 2, if L is a bifix-free regular language with quotient complexity n, then its syntactic complexity σ(L)
satisfies that σ(L) 6 bbf(n), where bbf(n) is the cardinality of Bbf(n) as in Lemma 23.

When 2 6 n 6 4, the set Bbf(n) is a semigroup. But for n > 5, it is not a semigroup because s1 = [2, 3, n, . . . , n, n],
s2 = [n, 3, 3, n, . . . , n, n] ∈ Bbf(n) while s1s2 = [3, 3, n, . . . , n, n] ∉ Bbf(n). Hence bbf(n) is not a tight upper bound on the
syntactic complexity of bifix-free regular languages in general. We look for a large semigroup contained in Bbf(n) that can
be the syntactic semigroup of a bifix-free regular language. For n > 2, let

W65
bf (n) = {t ∈ Bbf(n) | for all i, j ∈ Q where i ≠ j,

we have it = jt = n or it ≠ jt}.

(The reason for using the superscript 6 5 will be made clear in Theorem 29.)

Proposition 25. For n > 2, W65
bf (n) is a semigroup contained in Bbf(n) with cardinality

w65
bf (n) = |W65

bf (n)| =

n−2
k=0


Cn−2
k

2
(n − 2 − k)!.

Proof. First, note thatW65
bf (n) = W65

sf (n)∩Bbf(n), and thatW65
sf (n) is a semigroup contained in Bsf(n) by Proposition 12. For

any t1, t2 ∈ W65
bf (n), we have t1t2 ∈ W65

sf (n), and (n − 1)t1t2 = nt2 = n; so t1t2 ∈ Bbf(n). Then t1t2 ∈ W65
bf (n), and W65

bf (n)
is a semigroup contained in Bbf(n).

Pick any t ∈ W65
bf (n). Note that (n − 1)t = n and nt = n are fixed, and 1 ∉ rng(t). Let Q ′

= Q \ {n − 1, n},
E = {i ∈ Q ′

| it = n}, and D = Q ′
\ E. Suppose |E| = k, where 0 ≤ k ≤ n − 2; then there are Cn−2

k choices of E.
Elements of D are mapped to pairwise different elements of Q \ {1, n}; then there are Cn−2

n−2−k(n−2− k)! different mappings
t|D. Altogether, we have |W65

bf (n)| =
n−2

k=0


Cn−2
k

2
(n − 2 − k)!. �

Remark 26. Assume n > 3, and let Q ′
= Q \ {n − 1, n}. Then the semigroup W65

bf (n) is isomorphic to the symmetric
inverse semigroup ISQ ′ ; so w65

bf (n) = |ISQ ′ |. Janson and Mazorchuk [13] showed that, for large n, the number w65
bf (n) is

asymptotically

w65
bf (n) ∼

1
√
2e

e2
√
n−2−n+2(n − 2)n−

7
4 .

Proposition 27. For n > 2, let Q ′
= Q \ {n − 1, n} and Q ′′

= Q \ {1, n}. Then the semigroupW65
bf (n) is generated by

G65
bf (n) = {t ∈ W65

bf (n) | Q ′t = Q ′′ and it ≠ jt for all i, j ∈ Q ′
}.

Proof. The case for n = 2 is trivial since G65
bf (2) = W65

bf (2). Assume n > 3. We want to show thatW65
bf (n) = ⟨G65

bf (n)⟩. Since
G65
bf (n) ⊆ W65

bf (n), we have ⟨G65
bf (n)⟩ ⊆ W65

bf (n). Let t ∈ W65
bf (n). By definition, (n−1)t = nt = n. Let Et = {i ∈ Q ′

| it = n}.
If Et = ∅, then t ∈ G65

bf (n); otherwise, there exists x ∈ Q ′′ such that x ∉ rng(t). We prove by induction on |Et | that
t ∈ ⟨G65

bf (n)⟩.
First note that, for all t ∈ G65

bf (n), t|Q ′ is an injective mapping from Q ′ to Q ′′. Consider Et = {i} for some i ∈ Q ′. Since
|Et | = 1, rng(t) ∪ {x} = Q ′′. Let t1, t2 ∈ G65

bf (n) be defined by

1. jt1 = j + 1 for j = 1, . . . , i − 1, it1 = n − 1, jt1 = j for j = i + 1, . . . , n − 2,
2. 1t2 = x, jt2 = (j − 1)t for j = 2, . . . , i, jt2 = jt for j = i + 1, . . . , n − 2.

Then t1t2 = t , and t ∈ ⟨G65
bf (n)⟩.

Assume that any transformation t ∈ W65
bf (n) with |Et | < k can be generated by G65

bf (n), where 1 < k < n − 2. Consider
t ∈ W65

bf (n) with |Et | = k. Suppose Et = {e1, . . . , ek−1, ek}, and let Dt = Q ′
\ Et = {d1, . . . , dl}, where l = n − 2 − k. By

assumption, all s ∈ W65
bf (n) with |Es| = k − 1 can be generated by G65

bf (n). Let s be such that Es = {1, . . . , k − 1}; then
1s = · · · = (k − 1)s = n. In addition, let ks = x, and let (k + j)s = djt for j = 1, . . . , l. Let t ′ ∈ G65

bf (n) be such that
ejt ′ = j for j = 1, . . . , k − 1, kt ′ = n − 1, and djt ′ = k + j for j = 1, . . . , l. Then t ′s = t , and t ∈ ⟨G65

bf (n)⟩. Therefore,
W65

bf (n) = ⟨G65
bf (n)⟩. �

Theorem 28. For n > 2, let An = (Q , Σ, δ, 1, {n − 1}) be a DFA with alphabet Σ of size (n − 2)!, where each a ∈ Σ

defines a distinct transformation ta ∈ G65
bf (n). Then L = L(An) has quotient complexity κ(L) = n, and syntactic complexity

σ(L) = w65
bf (n). Moreover, L is bifix-free.
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Proof. The case for n = 2 is easy to verify. Assume n > 3. We first show that all the states of An are reachable. Note that
there exists a ∈ Σ such that ta = [2, . . . , n − 1, n, n] ∈ G65

bf (n). State 1 ∈ Q is the initial state, and ai−1 reaches state i ∈ Q
for i = 2, . . . , n. Furthermore, for 1 ≤ i ≤ n − 1, state i accepts an−1−i, while for j ≠ i, state j rejects it. Also, n is the empty
state. Thus all the states of An are distinct, and κ(L) = n.

By Proposition 27, the syntactic semigroup of L is W65
bf (n). So the syntactic complexity of L is σ(L) = w65

bf (n). By
Proposition 22, L is bifix-free. �

Theorem 29. For 2 6 n 6 5, if a bifix-free regular language L has quotient complexity κ(L) = n, then σ(L) 6 w65
bf (n), and this

bound is tight.

Proof. We know by Proposition 22 that the upper bound on the syntactic complexity of bifix-free regular languages is
reached by the largest semigroup contained in Bbf(n). Since w65

bf (n) = bbf(n) for n = 2, 3, and 4, w65
bf (n) is an upper bound,

and it is tight by Theorem 28.
For n = 5, we have bbf(5) = |Bbf(5)| = 41, and w65

bf (5) = |W65
bf (5)| = 34. Let Bbf(5) \ W65

bf (5) = {τ1, . . . , τ7}. We found
for each τi a unique ti ∈ W65

bf (5) such that the semigroup ⟨τi, ti⟩ is not a subset of Bbf(5):

τ1 = [2, 4, 4, 5, 5], t1 = [3, 4, 2, 5, 5];
τ2 = [3, 4, 4, 5, 5], t2 = [3, 5, 2, 5, 5];
τ3 = [4, 2, 2, 5, 5], t3 = [2, 4, 3, 5, 5];
τ4 = [4, 3, 3, 5, 5], t4 = [2, 5, 3, 5, 5];
τ5 = [5, 2, 2, 5, 5], t5 = [3, 2, 4, 5, 5];
τ6 = [5, 3, 3, 5, 5], t6 = [2, 3, 4, 5, 5];
τ7 = [5, 4, 4, 5, 5], t7 = [3, 2, 5, 5, 5].

Since ⟨τi, ti⟩ ⊆ TL, if both τi and ti are in TL, then TL ⊈ Bbf(5), and L is not bifix-free by Proposition 22. Thus, for
1 6 i 6 7, at most one of τi and ti can appear in TL, and |TL| 6 34. Since |W65

bf (5)| = 34 and W65
bf (5) is a semigroup,

we have σ(L) 6 34 = w65
bf (5) as the upper bound for n = 5. This bound is reached by the DFA A5 in Theorem 28. �

When n > 6, the semigroup W65
bf (n) is no longer the largest semigroup contained in Bbf(n), and the upper bound in

Theorem 29 does not apply. We find another large semigroupW>6
bf (n) suitable for bifix-free regular languages. For n > 3, let

U1
n = {t ∈ Bbf(n) | 1t = n},

U2
n = {t ∈ Bbf(n) | 1t = n − 1},

U3
n = {t ∈ Bbf(n) | 1t ∉ {n, n − 1}, and it ∈ {n − 1, n} for all i ≠ 1},

and letW>6
bf (n) = U1

n ∪ U2
n ∪ U3

n. Note that U3
3 = ∅.

Proposition 30. For n > 3, W>6
bf (n) is a semigroup contained in Bbf(n) with cardinality

w>6
bf (n) = |W>6

bf (n)| = (n − 1)n−3
+ (n − 2)n−3

+ (n − 3)2n−3.

Proof. First we show that U1
n is a semigroup. For any t1, t ′1 ∈ U1

n, since 1(t1t
′

1) = (1t1)t ′1 = nt ′1 = n, we have t1t ′1 ∈ U1
n. Next,

let t2 ∈ U2
n and t ∈ U1

n ∪ U2
n. If t ∈ U1

n, then 1(t2t) = (n − 1)t = n and 1(tt2) = nt2 = n; so t2t, tt2 ∈ U1
n. If t ∈ U2

n, then
1(t2t) = (n− 1)t = n and 1(tt2) = (n− 1)t2 = n; so t2t, tt2 ∈ U1

n as well. Thus U1
n ∪U2

n is also a semigroup. For any t3 ∈ U3
n

and t ′ ∈ W>6
bf (n), since it3 ∈ {n − 1, n} for all i ≠ 1, and (n − 1)t ′ = nt ′ = n, we have i(t3t ′) = n, and t3t ′ ∈ W>6

bf (n). Also
1(t ′t3) = (1t ′)t3 ∈ {n − 1, n}, so t ′t3 ∈ U1

n ∪ U2
n. HenceW>6

bf (n) is a semigroup contained in Bbf(n).
Note that U1

n, U
2
n, and U3

n are pairwise disjoint. For any t ∈ W>6
bf (n), there are three cases:

1. t ∈ U1
n: for any i ∉ {1, n − 1, n}, it can be chosen from Q \ {1}. Then |U1

n| = (n − 1)n−3;
2. t ∈ U2

n: for any i ∉ {1, n − 1, n}, it can be chosen from Q \ {1, n − 1}. Then |U2
n| = (n − 2)n−3;

3. t ∈ U3
n: now, 1t can be chosen from Q \ {1, n − 1, n}. For any i ∉ {1, n − 1, n}, it has two choices: it = n − 1 or n. Then

|U3
n| = (n − 3)2n−3.

Therefore we have |W>6
bf (n)| = (n − 1)n−3

+ (n − 2)n−3
+ (n − 3)2n−3. �

Table 3 contains values of w65
bf (n) and w>6

bf (n) for small n’s. When n ∈ {3, 4}, we haveW>6
bf (n) = W65

bf (n), and these cases
were already discussed. So we are only interested in larger values of n. When n > 6, one verifies that w>6

bf (n) > w65
bf (n);

henceW>6
bf (n) is larger thanW65

bf (n).

Proposition 31. For n > 5, the semigroup W>6
bf (n) is generated by G>6

bf (n) = {a1, a2, a3, b1, . . . , bn−3, c1, . . . , cm, d1, . . . , dl},
where m = (n − 2)n−3

− 1 and l = (n − 3)(2n−3
− 1), and

• a1 =
1
n

n−1
n


(2, . . . , n − 2), a2 =

1
n

n−1
n


(2, 3), a3 =

1
n

n−1
n

n−2
2


;



48 J. Brzozowski et al. / Theoretical Computer Science 449 (2012) 37–53

• for 1 6 i 6 n − 3, bi =
1
n

n−1
n

 i+1
n−1


;

• each ci defines a distinct transformation in U2
n other than [n − 1, n, . . . , n, n];

• each di defines a distinct transformation in U3
n other than [j, n, . . . , n, n] for all j ∈ {2, . . . , n − 2}.

For n = 5, a1 and a2 coincide, and 18 transformations suffice.

Proof. Since G>6
bf (n) ⊆ W>6

bf (n), we have ⟨G>6
bf (n)⟩ ⊆ W>6

bf (n). It remains to be shown that W>6
bf (n) ⊆ ⟨G>6

bf (n)⟩. Let
Q ′

= Q \ {1, n − 1, n}.
1. First consider U1

n. By Theorem 2, a1, a2 and a3 together generate the semigroup

Y′
= {t ∈ U1

n | for all i ∈ Q ′, it ∈ Q ′
},

which is contained in U1
n. For any t ∈ U1

n \Y′, let Et = {i ∈ Q | it = n− 1}; then Et ≠ ∅. Suppose Et = {i1, . . . , ik}, where
1 6 k 6 n − 3. Then there exists t ′ ∈ Y′ such that, for all i ∉ Et , it ′ = it . Let s = bi1−1 · · · bik−1. Note that Ets = {n − 1},
and, for all i ∉ Et , i(t ′s) = (it ′)s = it . So t ′s = t , and ⟨a1, a2, a3, b1, . . . , bn−3⟩ = U1

n.
2. Next, the transformations that are in U2

n ∪ U3
n but not in G>6

bf (n) are ti = [i, n, . . . , n, n], where 2 6 i 6 n − 1. Note that
d =

1
2

n−1
n

 Q ′

n−1


∈ G>6

bf (n), and, for each i ∈ {2, . . . , n − 1}, si =
1
n

n−1
n

2
i


∈ U1

n. Then ti = dsi ∈ ⟨G>6
bf (n)⟩, and

U2
n ∪ U3

n ⊆ ⟨G>6
bf (n)⟩.

ThereforeW>6
bf (n) = ⟨G>6

bf (n)⟩. �

Theorem 32. For n > 5, letA′
n = (Q , Σ, δ, 1, {n−1}) be aDFAwith alphabetΣ of size18 if n = 5 or (n−2)n−3

+(n−3)2n−3
+2

if n > 6, where each letter defines a transformation as in Proposition 31. Then L′
= L(A′

n) has quotient complexity κ(L′) = n,
and syntactic complexity σ(L′) = w>6

bf (n). Moreover, L′ is bifix-free.

Proof. First, for all i ∈ Q \ {1}, there exists a ∈ Σ such that ta = [i, n, . . . , n, n] ∈ G>6
bf (n), and state i is reachable

by a. So all the states in Q are reachable. Next, there exist b, c ∈ Σ such that tb = [n − 1, n, . . . , n, n] ∈ G>6
bf (n) and

tc = [n, 3, 4, . . . , n − 1, n, n] ∈ G>6
bf (n). The initial state accepts b, while all other states reject it. For 2 6 i 6 n − 2, state i

accepts cn−i−1, while all other states reject it. Also, state n − 1 is the only final state, and state n is the empty state. Then all
the states in Q are distinct, and κ(L′) = n.

By Proposition 31, the syntactic semigroup of L′ isW>6
bf (n); so σ(L′) = w>6

bf (n). By Proposition 22, L′ is bifix-free. �

Theorem 33. If L is a bifix-free regular language with κ(L) = 6, then σ(L) 6 w>6
bf (6) = 213 and this is a tight bound.

Proof. Since |Bbf(6)| = 339 and |W65
bf (6)| = 213, there are 126 transformations τ1, . . . , τ126 in Bbf(6) \ W65

bf (6). For each
τi, we enumerated transformations in W>6

bf (6) using GAP and found a unique ti ∈ W65
bf (6) such that ⟨ti, τi⟩ ⊈ Bbf(6). Thus,

for each i, at most one of ti and τi can appear in the syntactic semigroup TL of L. So we lower the bound to σ(L) 6 213. This
bound is reached by the DFA A′

6 in Theorem 32; so it is a tight upper bound for n = 6. �

Conjecture 34 (Bifix-Free Regular Languages). If L is a bifix-free regular language with κ(L) = n > 7, then σ(L) 6 w>6
bf (n).

7. Factor-free regular languages

Let L be a factor-free regular languagewith κ(L) = n. Since factor-free regular languages are also bifix-free, L as a quotient
is uniquely reachable, ε is the only final quotient of L, and L also has the empty quotient. As in Section 6, we assume that
Q is the set of states of quotient DFA of L, in which 1 is the initial state, and states n − 1 and n correspond to the quotients
ε and ∅, respectively. For n > 2, let

Bff(n) = {t ∈ Bbf(n) | for all j > 1, 1t j = n − 1 ⇒ it j = n ∀ i, 1 < i < n − 1}.

We first have the following observation.

Proposition 35. If L is a regular language with quotient complexity n and syntactic semigroup TL, then the following hold:

1. If L is factor-free, then TL is a subset of Bff(n).
2. If ε is the only final quotient of L, and TL ⊆ Bff(n), then L is factor-free.

Proof. 1. Assume L is factor-free. Then L is bifix-free, and TL ⊆ Bbf(n) by Proposition 22. For any transformation tw ∈ TL
performed by some non-empty word w, if 1t jw = n − 1 for some j > 1, then wj

∈ L. If we also have it jw ≠ n for some
i ∈ Q \ {1}, then i ∉ {n − 1, n} as (n − 1)t = nt = n for all t ∈ Bff(n). Thus there exist non-empty words u and v such that
state i is reachable by u, and state it jw accepts v. So uwjv ∈ L, which is a contradiction. Hence TL ⊆ Bff(n).

2. Since ε is the only final state and Bff(n) ⊆ Bbf(n), L is bifix-free by Proposition 22. If L is not factor-free, then there
exist non-empty words u, v and w such that w, uwv ∈ L. Thus 1tw = n − 1, and 1tuwv = 1(tutwtv) = n − 1. Since L is
bifix-free, 1tu ≠ 1 and ntv = n; thus (1tu)tw ≠ n, which contradicts the assumption that tw ∈ TL ⊆ Bff(n). Therefore L is
factor-free. �
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The properties of suffix- and bifix-free regular languages still apply to factor-free regular languages. Moreover, we have

Lemma 36. For all t ∈ Bff(n) and i ∉ st(1), if n − 1 ∈ st(1), then n ∈ st(i).

Proof. Suppose n − 1 = 1tk ∈ st(1) for some k > 1. If n ∉ st(i), then for all j > 1, it j ≠ n. In particular, itk ≠ n, which
contradicts the definition of Bff(n). Therefore n ∈ st(i). �

Lemma 37. We have |Bff(2)| = 1, and for n > 3, |Bff(n)| = Nn + On, where

On = 1 +

n−2
k=2

Cn−3
k−1 (k − 1)!


r2+···+rk+r

=n−k−2

Cn−k−2
r2,...,rk,rS

′

r+1(k)
k

j=2

S ′

rj+1(j − 1),

and Nn as given in Equation Eq. (3).

Proof. First we have Bff(2) = {[2, 2]} and |Bff(2)| = 1. Assume n > 3. Let t ∈ Bff(n) be any transformation. Suppose
st(1) = 1, 1t, . . . , 1tk, n, where 0 6 k 6 n − 2. Then there are two cases:

1. n − 1 ∈ st(1). Since (n − 1)t = n, we have n − 1 = 1tk, and k > 1. If k = 1, then 1t = n − 1, and it = n for all i ≠ 1;
such a t is unique. Consider k > 2. There are Cn−3

k−1 (k − 1)! different st(1). For 2 6 j 6 k, suppose there are rj + 1 nodes in
tree Tt(j); then there are S ′

rj+1(j − 1) such trees. Let E be the set of elements x that are not in any tree Tt(j) nor in st(1),
and let r = |E| = (n − k − 2) − (r2 + · · · + rk). By Lemma 36, n ∈ st(x) for all x ∈ E. Then the union of paths Pt(x)
for all x ∈ E form a labeled tree rooted at n with height at most k, and there are S ′

r+1(k) such trees. Thus the number of
transformations in this case is On.

2. n−1 ∉ st(1). Now, for all j > 1, 1t j ≠ n−1. Then t ∈ Bbf(n). As in the proof of Lemma 23, the number of transformations
in this case is Nn.

Altogether we have the desired formula. �

Let bff(n) = |Bff(n)|. From Proposition 35 and Lemma 37 we have

Proposition 38. For n > 2, if L is a factor-free regular language with quotient complexity n, then its syntactic complexity σ(L)
satisfies that σ(L) 6 bff(n), where bff(n) is the cardinality of Bff(n) as in Lemma 37.

The tight upper bound on the syntactic complexity of factor-free regular languages is reached by the largest semigroup
contained in Bff(n). When 2 6 n 6 4, Bff(n) is a semigroup. The languages L2 = ε, L3 = a over alphabet {a, b}, and
L4 = ab∗a have syntactic complexities 1 = bff(2), 2 = bff(3), and 6 = bff(4), respectively. So bff(n) is a tight upper
bound for n ∈ {2, 3, 4}. However, the set Bff(n) is not a semigroup for n > 5, because s1 = [2, 3, . . . , n − 1, n, n], s2 =n−1

n

 2
n−1

1
n


= [n, n − 1, 3, . . . , n − 2, n, n] ∈ Bff(n) but s1s2 = [n − 1, 3, . . . , n − 2, n, n, n] ∉ Bff(n).

Next, we find a large semigroup that can be the syntactic semigroup of a factor-free regular language. For n > 3, let
t0 =

Q\{1}
n

 1
n−1


= [n − 1, n, . . . , n], and let Wff(n) = U1

n ∪ {t0} ∪ U3
n.

Proposition 39. For n > 3, Wff(n) is a semigroup contained in Bff(n) with cardinality

wff(n) = |Wff(n)| = (n − 1)n−3
+ (n − 3)2n−3

+ 1.

Proof. As we have shown in the proof of Proposition 30, U1
n is a semigroup. For any t ∈ U1

n ∪ {t0}, since t0 ∈ U2
n, we have

tt0, t0t ∈ U1
n; so U1

n ∪ {t0} is also a semigroup. We also know that, for any t3 ∈ U3
n and t ′ ∈ Wff(n), since Wff(n) ⊆ W>6

bf (n),
i(t3t ′) = n for all i ≠ 1; so t3t ′ ∈ Wff(n). If t ′ ∈ U1

n ∪ {t0}, then 1t ′t3 = n and t ′t3 ∈ U1
n; otherwise, t ′ ∈ U3

n, and t ′t3 = t2 orQ
n


∈ U1

n. HenceWff(n) is a semigroup.
For any t ∈ U1

n, since 1t = n, we have t ∈ Bff(n). For any t ∈ U3
n, 1t ≠ n − 1, and it2 = n for all i ∈ {2, . . . , n}; then

t ∈ Bff(n) as well. Clearly t0 ∈ Bff(n). HenceWff(n) is contained in Bff(n).
We know that |U1

n| = (n − 1)n−3 and |U3
n| = (n − 3)2n−3. Therefore |Wff(n)| = (n − 1)n−3

+ (n − 3)2n−3
+ 1. �

For n ∈ {3, 4}, we have Wff(n) = Bff(n). So we are interested in larger values of n in the rest of this section.

Proposition 40. For n > 5, the semigroup Wff(n) is generated by Gff(n) = {a1, a2, a3, b1, . . . , bn−3, c1, . . . , cm}, where
m = (n − 3)(2n−3

− 1), and

• a1 =
1
n

n−1
n


(2, . . . , n − 2), a2 =

1
n

n−1
n


(2, 3), a3 =

1
n

n−1
n

n−2
2


;

• for 1 6 i 6 n − 3, bi =
1
n

n−1
n

 i+1
n−1


;

• each ci defines a distinct transformation in U3
n other than [j, n, . . . , n, n] for all j ∈ {2, . . . , n − 2}.

For n = 5, a1 and a2 coincide, and 10 transformations suffice.
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Proof. Weknow from the proof of Proposition 31 thatU1
n is generated by {a1, a2, a3, b1, . . . , bn−3}. Also, the transformations

that are in {t0} ∪ U3
n but not in Gff(n) are tj = [j, n, . . . , n, n], where j ∈ {2, . . . , n − 1}. Let Q ′

= Q \ {1, n − 1, n}. Each tj is
a composition of d =

n−1
n

 Q ′

n−1

1
2


∈ G>6

bf (n) and sj =
1
n

n−1
n

2
j


∈ U1

n. Therefore ⟨Gff(n)⟩ = Wff(n). �

Theorem 41. For n > 5, let An = (Q , Σ, δ, 1, {n − 1}) be a DFA with alphabet Σ of size 10 if n = 5 or (n − 3)2n−3
+ 3 if

n > 6, where each letter defines a transformation as in Proposition 40. Then L = L(An) has quotient complexity κ(L) = n, and
syntactic complexity σ(L) = wff(n). Moreover, L is factor-free.

Proof. Since Gff(n) ⊆ G>6
bf (n), the DFA An can be obtained from the DFA A′

n of Theorem 32 by restricting the alphabet.
The words used to show that all the states of A′

n are reachable and distinct still exist in An. Then we have κ(L) = n. By
Proposition 40, the syntactic semigroup of L isWff(n); so σ(L) = wff(n). By Proposition 35, L is factor-free. �

Theorem 42. For n ∈ {5, 6}, if L is a factor-free regular language with κ(L) = n, then σ(L) 6 wff(n) and this is a tight upper
bound.

Proof. For n = 5, |Bff(5)| = 31, and |Wff(5)| = 25. There are 6 transformations τ1, . . . , τ6 in Bff(5) \ Wff(5). For each τi,
1 6 i 6 6, we found a unique ti ∈ Wff(5) such that ⟨ti, τi⟩ ⊈ Bff(5):

τ1 = [2, 3, 4, 5, 5], t1 = [5, 2, 2, 5, 5],
τ2 = [2, 3, 5, 5, 5], t2 = [5, 4, 2, 5, 5],
τ3 = [2, 5, 3, 5, 5], t3 = [5, 3, 3, 5, 5],
τ4 = [3, 2, 5, 5, 5], t4 = [5, 2, 4, 5, 5],
τ5 = [3, 4, 2, 5, 5], t5 = [5, 3, 2, 5, 5],
τ6 = [3, 5, 2, 5, 5], t6 = [5, 3, 4, 5, 5].

For each 1 6 i 6 6, at most one of ti and τi can appear in the syntactic semigroup TL of a factor-free regular language L.
Then σ(L) = |TL| 6 25. By Theorem 41, this upper bound is tight for n = 5.

For n = 6, |Bff(6)| = 246, and |Wff(6)| = 150. There are 96 transformations τ1, . . . , τ96 in Bff(6) \ Wff(6). For each τi,
1 6 i 6 96,we enumerated the transformations inWff(6)usingGAP and found aunique ti ∈ Wff(6) such that ⟨ti, τi⟩ ⊈ Bff(6).
Thus 150 is a tight upper bound for n = 6. �

Conjecture 43 (Factor-Free Regular Languages). If L is a factor-free regular language with κ(L) = n, where n > 7, then
σ(L) 6 wff(n).

8. Quotient complexity of the reversal of free languages

It has been shown in [6] that for certain regular languages with maximal syntactic complexity, the reverse languages
have maximal quotient complexity. This is also true for some free languages, as we now show.

In this section, we consider non-deterministic finite automata (NFA). An NFA N is a quintuple N = (Q , Σ, δ, I, F), where
Q , Σ , and F are as in a DFA, δ : Q × Σ → 2Q is the non-deterministic transition function, and I is the set of initial states.
For any word w ∈ Σ∗, the reverse of w is defined inductively as follows: wR

= ε if w = ε, and wR
= uRa if w = au for

some a ∈ Σ and u ∈ Σ∗. The reverse of any language L is the language LR = {wR
| w ∈ L}. For any finite automaton

(DFA or NFA) M, we denote by MR the NFA obtained by reversing all the transitions of M and exchanging the roles of
initial and final states, and by MD, the DFA obtained by applying the subset construction to M. Then L(MR) = (L(M))R, and
L(MD) = L(M). To simplify our proofs, we use an observation from [2] that, for any NFA N that does not have any empty
states, if the automatonN R is deterministic, then the DFAN D is minimal if only reachable subsets are included in the subset
construction.

Theorem 44. For n > 4, the reverse of the prefix-free regular language accepted by the DFA An of Theorem 4 restricted to
{a, c, dn−2} has 2n−2

+ 1 quotients, which is the maximum possible for a prefix-free regular language.

Proof. Let Bn be the DFA An restricted to {a, c, dn−2}. Since L(An) is prefix-free, so is Ln = L(Bn). We show that κ(LRn) =

2n−2
+ 1.

Let Nn be the NFA obtained by removing unreachable states from the NFA BR
n . (See Fig. 4 for N6.) We first prove that the

following 2n−2
+ 1 sets of states of Nn are reachable: {{n − 1}} ∪ {S | S ⊆ {1, . . . , n − 2}}.

The singleton set {n− 1} of initial states of Nn is reached by ε. From {n− 1} we reach the empty set by a. The set {n− 2}
is reached by dn−2 from {n − 1}, and from here, {1} is reached by an−3. From any set {1, 2, . . . , i}, where 1 6 i < n − 2, we
reach {1, 2, . . . , i, i + 1} by can−3. Thus we reach {1, 2, . . . , n − 2} from {1} by (can−3)n−3. Now assume that any set S of
cardinality l 6 n − 2 can be reached; then we can get a set of cardinality l − 1 by deleting an element j from S by applying
ajdn−2an−2−j. Hence all the subsets of {1, 2, . . . , n − 2} can be reached.

The automaton N R
n is a subset of An, and it is deterministic. Then N D

n is minimal. Hence κ(LRn) = 2n−2
+ 1, which is the

maximal quotient complexity of reversal of prefix-free languages as shown in [11]. �
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Fig. 4. NFA N6 of LR6 with quotient complexity κ(LR6) = 17; empty state omitted.

It is interesting that, for suffix-, bifix-, and factor-free regular languages, although we do not have tight upper bounds on
their syntactic complexities, some languages in these classes with large syntactic complexities have their reverse languages
reaching the upper bounds on the quotient complexities for the reversal operation.

Theorem 45. For n > 4, the reverse of the suffix-free regular language accepted by the DFA A′
n of Theorem 19 restricted to

{a1, a2, a3, c} has 2n−2
+ 1 quotients, which is the maximum possible for a suffix-free regular language.

Proof. Let Cn be the DFA A′
n restricted to the alphabet {a1, a2, a3, c}. Since L(A′

n) is suffix-free, so is L′
n = L(Cn). Let N ′

n be
the NFA obtained from CR

n by removing unreachable states. Fig. 5 shows the NFA N ′

6 .
Applying the subset construction to N ′

n , we get a DFA N ′D
n . Its initial state is a singleton set {2}. From the initial state, we

can reach state {2, 3, . . . , i} by (a3an−3
1 )i−2, where 3 6 i 6 n − 1. Then the state {2, 3, . . . , n − 1} is reached from {2} by

(a3an−3
1 )n−3. Assume that any set S of cardinality l can be reached, where 2 6 l 6 n−2. If j ∈ S, thenwe can reach S ′

= S \{j}
from S by aj−1

1 a3a
n−j−1
1 . So all the non-empty subsets of {2, 3, . . . , n − 1} can be reached. We can also reach the singleton

set {1} from {2} by c , and, from there, the empty state by c again. Hence N ′D
n has 2n−2

+ 1 reachable states.
Since the automaton N ′R

n , the reverse of N ′
n , is a subset of Cn, it is deterministic; hence N ′D

n is minimal. Then the quotient
complexity of L′R

n is 2n−2
+ 1, which meets the upper bound for reversal of suffix-free regular languages [10]. �

Theorem 46. For n > 5, the reverse of the factor-free regular language accepted by the DFA An of Theorem 41 restricted to the
alphabet {a1, a2, a3, c}, where c = [2, n − 1, n, . . . , n, n] ∈ Gff(n), has 2n−3

+ 2 quotients, which is the maximum possible for
a bifix- or factor-free regular language.

Proof. Let Dn be the DFA An restricted to the alphabet {a1, a2, a3, c}; then L′′
n = L(Dn) is factor-free. Let N ′′

n be the NFA
obtained from DR

n by removing unreachable states. An example of N ′′
n is shown in Fig. 6.

Note that N ′′
n can be obtained from the NFA N ′

n−1 in Theorem 45 by adding a new state n − 1, which is the only initial
state in N ′′

n , and the transition from {n − 1} to {2} under input c. We know that all non-empty subsets of {2, 3, . . . , n − 2}
are reachable from {2}. The final state {1} is also reachable from {2}. From the initial state n − 1, we reach the empty state
under input a1. Then N ′′D

n has 2n−3
+ 2 reachable states.

Since N ′′R
n is a subset of Dn and it is deterministic, the DFA N ′′D

n is minimal. Therefore κ(L′′R
n ) = 2n−3

+ 2, and it reaches
the upper bound for reversal of both bifix- and factor-free regular languages with quotient complexity n [4]. �

9. Conclusions

Our results are summarized in Tables 2 and 3. Each cell of Table 2 shows the syntactic complexity bounds of prefix-
and suffix-free regular languages, in that order, with a particular alphabet size. Table 3 is structured similarly for bifix- and
factor-free regular languages. The figures in bold type are tight bounds verified by GAP. To compute the bounds for suffix-,
bifix-, and factor-free languages, we enumerated semigroups generated by elements of Bsf(n), Bbf(n), and Bff(n) that are
contained in Bsf(n), Bbf(n), and Bff(n), respectively, and recorded the largest ones. By Propositions 5, 22 and 35, we obtained
the desired bounds from the enumeration. The asterisk ∗ indicates that the bound is already tight for a smaller alphabet.
In Table 2, the last four rows include the tight upper bound nn−2 for prefix-free languages, w65

sf (n), which is a tight upper
bound for 2 6 n 6 5 for suffix-free languages, conjectured upper bound w>6

sf (n) for suffix-free languages, and a weaker
upper bound bsf(n) for suffix-free languages. In Table 3, the last four rows include w65

bf (n), which is a tight upper bound
for bifix-free languages for 2 6 n 6 5, conjectured upper bounds w>6

bf (n) for bifix-free languages and wff(n) for factor-free
languages, and weaker upper bounds bbf(n) for bifix-free languages and bff(n) for factor-free languages.

Fig. 5. NFA N ′

6 of L′R
6 with quotient complexity κ(L′R

6 ) = 17; empty state omitted.
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Fig. 6. NFA N ′′

7 of L′′R
7 with quotient complexity κ(L′′R

7 ) = 18; empty state omitted.

Table 2
Syntactic complexities of prefix- and suffix-free regular languages.

n = 2 n = 3 n = 4 n = 5 n = 6

|Σ | = 1 1 2 3 4 5
|Σ | = 2 ∗ 3/3 11/11 49/49 ?
|Σ | = 3 ∗ ∗ 14/13 95/61 ?
|Σ | = 4 ∗ ∗ 16/∗ 110/67 ?
|Σ | = 5 ∗ ∗ ∗ 119/73 ?
|Σ | = 6 ∗ ∗ ∗ 125/ ∗ ? /501
|Σ | = 7 ∗ ∗ ∗ ∗ 1296/ ?
|Σ | = 8 ∗ ∗ ∗ ∗ ∗ /629
· · ·

nn−2 1 3 16 125 1296
w65

sf (n) 1 3 13 73 501
w>6

sf (n) 1 3 11 67 629
bsf(n) 1 3 15 115 1169

Table 3
Syntactic complexities of bifix- and factor-free regular languages.

n = 2 n = 3 n = 4 n = 5 n = 6

|Σ | = 1 1 2 3 4 5
|Σ | = 2 ∗ ∗ 7/6 20/12 ?
|Σ | = 3 ∗ ∗ ∗ 31/16 ?
|Σ | = 4 ∗ ∗ ∗ 32/19 ?
|Σ | = 5 ∗ ∗ ∗ 33/20 ?
|Σ | = 6 ∗ ∗ ∗ 34/ ? ?
· · ·

w65
bf (n) 1 2 7 34 209

w>6
bf (n) 1 2 7 33 213

wff(n) 1 2 6 25 150
bbf(n)/bff(n) 1/1 2/2 7/6 41/31 339/246
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