40 research outputs found

    Strain Modulated Superlattices in Graphene

    Full text link
    Strain engineering of graphene takes advantage of one of the most dramatic responses of Dirac electrons enabling their manipulation via strain-induced pseudo-magnetic fields. Numerous theoretically proposed devices, such as resonant cavities and valley filters, as well as novel phenomena, such as snake states, could potentially be enabled via this effect. These proposals, however, require strong, spatially oscillating magnetic fields while to date only the generation and effects of pseudo-gauge fields which vary at a length scale much larger than the magnetic length have been reported. Here we create a periodic pseudo-gauge field profile using periodic strain that varies at the length scale comparable to the magnetic length and study its effects on Dirac electrons. A periodic strain profile is achieved by pulling on graphene with extreme (>10%) strain and forming nanoscale ripples, akin to a plastic wrap pulled taut at its edges. Combining scanning tunneling microscopy and atomistic calculations, we find that spatially oscillating strain results in a new quantization different from the familiar Landau quantization observed in previous studies. We also find that graphene ripples are characterized by large variations in carbon-carbon bond length, directly impacting the electronic coupling between atoms, which within a single ripple can be as different as in two different materials. The result is a single graphene sheet that effectively acts as an electronic superlattice. Our results thus also establish a novel approach to synthesize an effective 2D lateral heterostructure - by periodic modulation of lattice strain.Comment: 18 pages, 5 figures and supplementary informatio

    Exact eigenstate analysis of finite-frequency conductivity in graphene

    Full text link
    We employ the exact eigenstate basis formalism to study electrical conductivity in graphene, in the presence of short-range diagonal disorder and inter-valley scattering. We find that for disorder strength, WW \ge 5, the density of states is flat. We, then, make connection, using the MRG approach, with the work of Abrahams \textit{et al.} and find a very good agreement for disorder strength, WW = 5. For low disorder strength, WW = 2, we plot the energy-resolved current matrix elements squared for different locations of the Fermi energy from the band centre. We find that the states close to the band centre are more extended and falls of nearly as 1/El21/E_l^{2} as we move away from the band centre. Further studies of current matrix elements versus disorder strength suggests a cross-over from weakly localized to a very weakly localized system. We calculate conductivity using Kubo Greenwood formula and show that, for low disorder strength, conductivity is in a good qualitative agreement with the experiments, even for the on-site disorder. The intensity plots of the eigenstates also reveal clear signatures of puddle formation for very small carrier concentration. We also make comparison with square lattice and find that graphene is more easily localized when subject to disorder.Comment: 11 pages,15 figure

    Chemically-induced Mobility Gaps in Graphene Nanoribbons: A Route for Upscaling Device Performances

    Full text link
    We report a first-principles based study of mesoscopic quantum transport in chemically doped graphene nanoribbons with a width up to 10 nm. The occurrence of quasibound states related to boron impurities results in mobility gaps as large as 1 eV, driven by strong electron-hole asymmetrical backscattering phenomena. This phenomenon opens new ways to overcome current limitations of graphene-based devices through the fabrication of chemically-doped graphene nanoribbons with sizes within the reach of conventional lithography.Comment: Nano Letters (in press

    Enquêtes sur les souches de mildiou

    No full text
    National audienc
    corecore