21 research outputs found
ΠΠ°ΡΠ°Π»ΡΡΠΈΡΠ½Π΅ ΠΊΠ°ΡΠ±ΠΎΠ½-ΠΊΠ°ΡΠ±ΠΎΠ½ ΡΠ° ΠΊΠ°ΡΠ±ΠΎΠ½-Π³Π΅ΡΠ΅ΡΠΎΠ°ΡΠΎΠΌ ΡΠΏΡΡΠΆΠ΅Π½Π΅ ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ n-Π·Π°ΠΌΡΡΠ΅- Π½ΠΈΡ ΠΌΠ°Π»Π΅ΡΠ½ΡΠΌΡΠ΄ΡΠ² Π΄ΠΎ 4Π½-1,2,4-ΡΡΠΈΠ°Π·ΠΎΠ»-3-ΡΡΠΎΠ»ΡΠ², 2-Π°ΠΌΡΠ½ΠΎ-1,3-ΡΡΠ°Π·ΠΎΠ»ΡΠ², 1Π½-ΡΠΌΡΠ΄Π°Π·ΠΎΠ»Ρ ΡΠ° 2-ΡΠ΅- Π½ΡΠ»ΡΠ½Π΄ΠΎΠ»ΡΠ·ΠΈΠ½Ρ Π² ΠΏΡΠΈΡΡΡΠ½ΠΎΡΡΡ ΠΊΠΈΡΠ»ΠΎΡ Π»ΡΡΡΡΠ°
In the paper the cheap and effective method of the synthesis of 3-heteryl substituted succinimides via catalytic Michael addition are presented. Lewis acids have been found to be effective catalysts for conjugate addition of N-aryl substituted maleimides to the heterocycles with donor-heteroatoms or CH-active function. Catalytic reactions proceed in mild conditions without formation of by-products that are often present in the classical Michael reaction. The compounds synthesized are promising and interesting substrates for biological evaluation since numerous natural products, drugs and drug candidates bear the succinimide core. Moreover, regioselectivity of addition of ambident heterocyclic nucleophiles such as 4H-1,2,4-triazole-3-thiole, 1H-imidazole and 2-amino- 1,3-thiazole to maleimides have been investigated. Lewis acids such as aluminium chloride, zinc chloride and lithium perchlorate have been tested on different heterocyclic substrates as catalysts. Interestingly, depending on nucleophilicity of the substrate different Lewis acids have shown significantly varying efficacy. In this respect aluminium chloride was identified as the most effective catalyst for CβC addition among the Lewis acids tested. Lithium perchlorate appears to be the most efficient in the case of CβN addition with the endocyclic nitrogen atom of the hererocycle. Zinc chloride shows a good catalytic efficacy in addition of maleimides to the exocyclic amino group of 2-aminothiazole. Finally, the advantages of the catalytic approach developed such as mild reaction conditions, easy handling, low toxicity of the catalysts and their low cost make this method useful for the synthesis of new 3-heteryl substituted succinimides, which, in turn, are interesting substrates in medicinal chemistry.Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΏΡΠΎΡΡΠΎΠΉ ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠ½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΡΠΈΠ½ΡΠ΅Π·Π° 3-Π³Π΅ΡΠ°ΡΠΈΠ»Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΏΠΈΡΡΠΎΠ»ΠΈΠ΄ΠΈΠ½-2,5-Π΄ΠΈΠΎΠ½ΠΎΠ² Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΠΈΡ
Π°ΡΠ»Ρ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΡΡΠΈΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΡΡΠΎΠΊΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΡΠ΅Π°ΠΊΡΠΈΡΡ
ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ N-Π°ΡΠΈΠ»Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΌΠ°Π»Π΅ΠΈΠ½ΠΈΠΌΠΈΠ΄ΠΎΠ² ΠΊ Π΄ΠΎΠ½ΠΎΡΠ½ΡΠΌ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»Π°ΠΌ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡ Π² Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π΅ ΡΠ»ΡΡΠ°Π΅Π² ΠΏΡΠΈ ΠΊΠΎΠΌΠ½Π°ΡΠ½ΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ ΠΈ ΠΌΡΠ³ΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΠ·Π±Π΅Π³Π°ΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΡ
ΠΏΠΎΠ±ΠΎΡΠ½ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ². Π‘ΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ Ρ
ΠΈΠΌΠΈΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Ρ
ΠΎΡΠΎΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΠΏΠΈΡΠΎΠ»ΠΈΠ΄ΠΈΠ½-2,5-Π΄ΠΈΠΎΠ½ΠΎΠ² ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ, Π°Π½ΡΠΈΡΠΏΠΈΠ»Π΅ΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΡΠ±Π΅ΡΠΊΡΠ»Π΅Π·Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ. Π’Π°ΠΊΠΆΠ΅ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΡ ΠΏΡΠΈΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΡΡΠΊΡΠΈΠ½ΠΈΠΌΠΈΠ΄Π½ΠΎΠ΅ ΡΠ΄ΡΠΎ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²Π»ΡΡΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΠΈ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠ°ΠΌΠΈ. Π ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π±ΡΠ»Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° ΡΠ΅Π³ΠΈΠΎΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΌΠ°Π»Π΅ΠΈΠ½ΠΈΠΌΠΈΠ΄ΠΎΠ² ΠΊ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΡΠ±ΡΡΡΠ°ΡΠ°ΠΌ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Ρ
Π»ΠΎΡΠΈΠ΄Ρ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ, ΡΠΈΠ½ΠΊΠ° ΠΈ ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°Ρ Π»ΠΈΡΠΈΡ. ΠΠΊΠ°Π·Π°Π»ΠΎΡΡ, ΡΡΠΎ Π°ΠΏΡΠΎΠ±ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΡΡΠΈΡΠ° ΠΈΠΌΠ΅ΡΡ ΡΠ°Π·Π½ΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π½Π° ΡΠ°Π·Π½ΡΡ
ΡΡΠ±ΡΡΡΠ°ΡΠ°Ρ
, ΡΡΠΎ, Π²Π΅ΡΠΎΡΡΠ½ΠΎ, Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ»ΡΠ½ΠΎΡΡΠΈ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»Π°. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠΌ Π΄Π»Ρ Π‘βΠ‘ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΎΠΊΠ°Π·Π°Π»ΡΡ Ρ
Π»ΠΎΡΠΈΠ΄ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°Ρ Π»ΠΈΡΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π» Π²ΡΡΠΎΠΊΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈ Π‘βN ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ, Π° Ρ
Π»ΠΎΡΠΈΠ΄ ΡΠΈΠ½ΠΊΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΠΎΠ»ΡΡΠΈΡΡ Π²ΡΡΠΎΠΊΠΈΠ΅ Π²ΡΡ
ΠΎΠ΄Ρ Π°Π΄Π΄ΡΠΊΡΠΎΠ² Π² ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΌΠ°Π»Π΅ΠΈΠ½ΠΈΠΌΠΈΠ΄ΠΎΠ² ΠΊ ΡΠΊΠ·ΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΌΠΈΠ½ΠΎΠ³ΡΡΠΏΠΏΠ΅ 2-Π°ΠΌΠΈΠ½ΠΎΡΠΈΠ°Π·ΠΎΠ»Π°. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Π·Π΄Π΅ΡΡ ΠΎΠΏΡΠΈΠΌΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°ΡΡ Π½ΠΎΠ²ΡΠ΅ 3-Π³Π΅ΡΠ°ΡΠΈΠ»Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΠΏΠΈΡΡΠΎΠ»ΠΈΠ΄ΠΈΠ½-2,5-Π΄ΠΈΠΎΠ½Ρ.Π Π΄Π°Π½ΡΠΉ ΠΏΡΠ±Π»ΡΠΊΠ°ΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΏΡΠΎΡΡΠΈΠΉ ΡΠ° Π΅ΠΊΠΎΠ½ΠΎΠΌΠ½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
3-Π³Π΅ΡΠ΅ΡΠΈΠ»Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΠΏΡΡΠΎΠ»ΡΠ΄ΠΈΠ½-2,5-Π΄ΡΠΎΠ½ΡΠ² Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½ΠΎΡ ΡΠ΅Π°ΠΊΡΡΡ ΠΡΡ
Π°Π΅Π»Ρ. Π ΡΠΊΠΎΡΡΡ ΠΊΠ°ΡΠ°Π»ΡΠ·Π°ΡΠΎΡΡΠ² Π±ΡΠ»ΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Ρ ΠΊΠΈΡΠ»ΠΎΡΠΈ ΠΡΡΡΡΠ°, ΡΠΊΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΠΈΡΠΎΠΊΡ ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½Ρ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ Ρ ΡΠ΅Π°ΠΊΡΡΡΡ
ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ N-Π°ΡΠΈΠ»Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΠΌΠ°Π»Π΅ΡΠ½ΡΠΌΡΠ΄ΡΠ² Π΄ΠΎ Π΄ΠΎΠ½ΠΎΡΠ½ΠΈΡ
ΡΠ° Π‘Π-Π°ΠΊΡΠΈΠ²Π½ΠΈΡ
Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΠ². ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π°ΠΊΡΡΡ ΠΏΠ΅ΡΠ΅Π±ΡΠ³Π°ΡΡΡ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌΡ ΠΏΡΠΈ ΠΊΡΠΌΠ½Π°ΡΠ½ΡΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Ρ ΠΌβΡΠΊΠΈΡ
ΡΠΌΠΎΠ²Π°Ρ
, ΡΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡ ΡΠ½ΠΈΠΊΠ½ΡΡΠΈ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π½Π΅Π±Π°ΠΆΠ°Π½ΠΈΡ
ΠΏΠΎ-Π±ΡΡΠ½ΠΈΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΡΠ². Π‘ΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½Ρ ΡΠ΅ΡΠΎΠ²ΠΈΠ½ΠΈ Ρ ΡΡΠΊΠ°Π²ΠΈΠΌΠΈ ΡΠ° ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ ΠΎΠ±βΡΠΊΡΠ°ΠΌΠΈ Π· ΡΠΎΡΠΊΠΈ Π·ΠΎΡΡ ΠΌΠ΅Π΄ΠΈΡΠ½ΠΎΡ Ρ
ΡΠΌΡΡ, ΠΎΡΠΊΡΠ»ΡΠΊΠΈ Π²ΡΠ΄ΠΎΠΌΠΎ, ΡΠΎ ΡΠΏΠΎΠ»ΡΠΊΠΈ ΡΠ· ΡΡΠΊΡΠΈΠ½ΡΠΌΡΠ΄Π½ΠΈΠΌ ΡΠ΄ΡΠΎΠΌ ΠΏΡΠΎΡΠ²Π»ΡΡΡΡ Π°Π½ΡΠΈΠ±Π°ΠΊΡΠ΅ΡΡΠ°Π»ΡΠ½Ρ, ΠΏΡΠΎΡΠΈΡΡΠ±Π΅ΡΠΊΡΠ»ΡΠΎΠ·Π½Ρ ΡΠ° Π°Π½ΡΠΈΠ΅ΠΏΡΠ»Π΅ΠΏΡΠΈΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ. ΠΡΠ΄ΠΎΠΌΡ ΡΠ°ΠΊΠΎΠΆ ΠΏΡΠΈΡΠΎΠ΄Π½Ρ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π· ΠΏΡΡΠΎΠ»ΡΠ΄ΠΈΠ½-2,5-Π΄ΡΠΎΠ½ΠΎΠ²ΠΈΠΌ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠΌ, ΡΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΡΡΡΡΡ ΡΠΊ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½Ρ ΡΠ° ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½Ρ Π°Π½ΡΠΈΠ±ΡΠΎΡΠΈΠΊΠΈ. Π£ Π΄Π°Π½ΡΠΉ ΡΠΎΠ±ΠΎΡΡ Π±ΡΠ»ΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ ΡΠ΅Π³ΡΠΎΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ ΠΌΠ°Π»Π΅ΡΠ½ΡΠΌΡΠ΄ΡΠ² Π΄ΠΎ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΡ
ΡΡΠ±ΡΡΡΠ°ΡΡΠ² Π· Π΄Π²ΠΎΠΌΠ° Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΠΈΠΌΠΈ Π΄ΠΎΠ½ΠΎΡΠ½ΠΈΠΌΠΈ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ. Π ΡΠΊΠΎΡΡΡ ΠΊΠ°ΡΠ°Π»ΡΠ·Π°ΡΠΎΡΡΠ² Π±ΡΠ»ΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Ρ Ρ
Π»ΠΎΡΠΈΠ΄ΠΈ Π°Π»ΡΠΌΡΠ½ΡΡ ΡΠ° ΡΠΈΠ½ΠΊΡ, Π° ΡΠ°ΠΊΠΎΠΆ Π»ΡΡΡΡ ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°Ρ. ΠΡΠ»ΠΎ Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π²ΠΈΠΏΡΠΎΠ±ΡΠ²Π°Π½Ρ ΠΊΠΈΡΠ»ΠΎΡΠΈ ΠΡΡΡΡΠ° ΠΏΡΠΎΡΠ²Π»ΡΡΡΡ ΡΡΠ·Π½Ρ ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π½Π° ΡΡΠ·Π½ΠΈΡ
ΡΡΠ±ΡΡΡΠ°ΡΠ°Ρ
, ΡΠΎ Π²ΠΎΡΠ΅Π²ΠΈΠ΄Ρ Π·Π°Π»Π΅ΠΆΠΈΡΡ Π²ΡΠ΄ Π½ΡΠΊΠ»Π΅ΠΎΡΡΠ»ΡΠ½ΠΎΡΡΡ Π³Π΅ΡΠ΅ΡΠΎΡΠΈΠΊΠ»Ρ. ΠΠ°ΠΉΠ±ΡΠ»ΡΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌ ΠΊΠ°ΡΠ°Π»ΡΠ·Π°ΡΠΎΡΠΎΠΌ Π΄Π»Ρ Π‘βΠ‘ ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ Π²ΠΈΡΠ²ΠΈΠ²ΡΡ Π°Π»ΡΠΌΡΠ½ΡΡ Ρ
Π»ΠΎΡΠΈΠ΄. Π£ ΡΠ²ΠΎΡ ΡΠ΅ΡΠ³Ρ, Π»ΡΡΡΡ ΠΏΠ΅ΡΡ
Π»ΠΎΡΠ°Ρ ΠΏΠΎΠΊΠ°Π·Π°Π² Π²ΠΈΡΠΎΠΊΡ ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π΄Π»Ρ Π‘βN ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ, Π° ΡΠΈΠ½ΠΊΡ Ρ
Π»ΠΎΡΠΈΠ΄ Π±ΡΠ² ΡΠ΄Π΅Π½ΡΠΈΡΡΠΊΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΊ Π½Π°ΠΉΠ±ΡΠ»ΡΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΉ Ρ Π²ΠΈΠΏΠ°Π΄ΠΊΡ ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ ΠΌΠ°Π»Π΅ΡΠ½ΡΠΌΡΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡΠ»ΡΡΡ Π΄ΠΎ Π΅ΠΊΠ·ΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΎΡ Π°ΠΌΡΠ½ΠΎΠ³ΡΡΠΏΠΈ 2-Π°ΠΌΡΠ½ΠΎΡΡΠ°Π·ΠΎΠ»Ρ. ΠΠ΅ΡΠ΅Π²Π°Π³Π°ΠΌΠΈ Π΄Π°Π½ΠΎΠ³ΠΎ ΠΊΠ°ΡΠ°Π»ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ Ρ ΠΌβΡΠΊΡ ΡΠ΅Π°ΠΊΡΡΠΉΠ½Ρ ΡΠΌΠΎΠ²ΠΈ, Π½ΠΈΠ·ΡΠΊΠ° ΡΠΎΠΊΡΠΈΡΠ½ΡΡΡΡ ΠΊΠ°ΡΠ°Π»ΡΠ·Π°ΡΠΎΡΡΠ² ΡΠ° ΡΡ
Π½ΠΈΠ·ΡΠΊΠ° ΡΡΠ½Π°, ΡΠΎ ΡΠΎΠ±ΠΈΡΡ Π΄Π°Π½ΠΈΠΉ ΠΏΡΠ΄Ρ
ΡΠ΄ ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ½ΠΎ Π²ΠΈΠ³ΡΠ΄Π½ΠΈΠΌ Π΄Π»Ρ ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ 3-Π³Π΅ΡΠ΅ΡΠΈΠ»Π·Π°ΠΌΡΡΠ΅Π½ΠΈΡ
ΠΏΡΡΠΎΠ»ΡΠ΄ΠΈΠ½-2,5-Π΄ΡΠΎΠ½ΡΠ²
Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents
InhA, the enoyl reductase from the mycobacterial type II fatty acid biosynthesis pathway, is a target for the development of novel drugs against tuberculosis. We exploited copper-catalyzed [3+2] cycloaddition between alkynes and different azides to afford 1,4-disubstituted triazole or Ξ±-ketotriazole derivatives. Several compounds bearing a lipophilic chain mimicking the substrate were able to inhibit InhA. Among them, 1-dodecyl-4-phenethyl-1H-1,2,3-triazole displayed a minimum inhibitory concentration inferior to 2 ΞΌg/mL against Mycobacterium tuberculosis H37Rv
Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents.
A series of triazoles have been prepared and evaluated as inhibitors of InhA as well as inhibitors of Mycobacterium tuberculosis H(37)R(v). Several of these new compounds possess a good activity against InhA, particularly compounds 17 and 18 for which molecular docking has been performed. Concerning their activities against M. tuberculosis H(37)R(V) strain, two of them, 3 and 12, were found to be good inhibitors with MIC values of 0.50 and 0.25 ΞΌg/mL, respectively. Particularly, compound 12 presenting the best MIC value of all compounds tested (0.6 ΞΌM) is totally inactive against InhA
Synthesis of Methylerythritol Phosphate Analogues and Their Evaluation as Alternate Substrates for IspDF and IspE from Agrobacterium tumefaciens
International audienc
Synthesis and evaluation of Ξ±-ketotriazoles and Ξ±,Ξ²-diketotriazoles as inhibitors of Mycobacterium tuberculosis
Two series of Ξ±-ketotriazole and Ξ±,Ξ²-diketotriazole derivatives were synthesized and evaluated for antitubercular and cytotoxic activities. Among them, two Ξ±,Ξ²-diketotriazole compounds, 6b and 9b, exhibited good activities (minimum inhibitory concentration = 7.6 ΞΌM and 6.9 ΞΌM, respectively) on Mycobacterium tuberculosis and multi-drug resistant M. tuberculosis strains and presented no cytotoxicity (IC50 > 50 ΞΌM) on colorectal cancer HCT116 and normal fibroblast GM637H cell lines. These two compounds represent promising leads for further optimization
Chemical synthesis, molecular modeling and pharmacophore mapping of new pyrrole derivatives as inhibitors of InhA enzyme and Mycobacterium tubercolosis growth
International audienc
Synthesis of 3-heteryl substituted pyrrolidine-2,5-diones via catalytic Michael reaction and evaluation of their inhibitory activity against InhA and Mycobacterium tuberculosis
In the present paper, we report the synthesis via catalytic Michael reaction and biological
results of a series of 3-heteryl substituted pyrrolidine-2,5-dione derivatives as moderate inhibitors
against M. tuberculosis H37Rv growth. Some of them present also inhibition activities against InhA
Synthesis of Methylerythritol Phosphate Analogues and Their Evaluation as Alternate Substrates for IspDF and IspE from <i>Agrobacterium tumefaciens</i>
The methylerythritol phosphate biosynthetic
pathway, found in most
Bacteria, some parasitic protists, and plant chloroplasts, converts d-glyceraldehyde phosphate and pyruvate to isopentenyl diphosphate
(<b>IPP</b>) and dimethylallyl diphosphate (<b>DMAPP</b>), where it intersects with the mevalonate pathway found in some
Bacteria, Archaea, and Eukarya, including the cytosol of plants. d-3-Methylerythritol-4-phosphate (<b>MEP</b>), the first
pathway-specific intermediate in the pathway, is converted to <b>IPP</b> and <b>DMAPP</b> by the consecutive action of the
IspD-H proteins. We synthesized five d-<b>MEP</b> analoguesξΈd-erythritol-4-phosphate (<b>EP</b>), d-3-methylthrietol-4-phosphate
(<b>MTP</b>), d-3-ethylerythritol-4-phosphate (<b>EEP</b>), d-1-amino-3-methylerythritol-4-phosphate (<b>NMEP</b>), and d-3-methylerythritol-4-thiolophosphate
(<b>MESP</b>)ξΈand studied their ability to function as
alternative substrates for the reactions catalyzed by the IspDF fusion
and IspE proteins from <i>Agrobacterium tumefaciens</i>,
which covert <b>MEP</b> to the corresponding eight-membered
cyclic diphosphate. All of the analogues, except <b>MTP</b>,
and their products were substrates for the three consecutive enzymes
Design, chemical synthesis of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives and biological activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis.
We report here the discovery, synthesis and screening results of a series of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives as a novel class of potent inhibitors of Mycobacterium tuberculosis H37Rv strain as well as the enoyl acyl carrier protein reductase (ENR) InhA. Among them, several compounds displayed good activities against InhA which is one of the key enzymes involved in the type II fatty acid biosynthesis pathway of the mycobacteria cell wall. Furthermore, some exhibited promising activities against M. tuberculosis and multi-drug resistant M. tuberculosis strains