8 research outputs found

    Ethanolysis optimisation of Jupati (Raphia taedigera Mart.) oil to biodiesel using response surface methodology

    No full text
    In this work, the transesterification of jupati (Raphia taedigera Mart.) oil using ethanol and acid catalyst was examined. The production of biodiesel was performed using a central composite design (CCD). A range of values for catalyst concentration (1 to 4.21%), temperature (70-80 °C), and the molar ratio of alcohol to oil (6:1-13.83:1) were tested, and ester content, viscosity, and yield were the response variables. The synthesis process was optimised using response surface methodology (RSM), resulting in the following optimal conditions for the production of jupati ethyl esters: a catalyst concentration of 3.85% at 80 °C and an alcohol-to-oil molar ratio of 10:1

    Study of the activity and stability of sulfonated carbon catalyst from agroindustrial waste in biodiesel production: Influence of pyrolysis temperature on functionalization

    No full text
    The influence of pyrolysis temperature on the activity and catalytic stability of sulfonated biochar, from the agro-industrial residue murumuru kernel shell, was evaluated in the esterification reaction. Carbonaceous materials were synthesized by direct pyrolysis at 450, 600 and 750 °C and functionalized with sulfuric acid at 200 °C for a 4 h period. The materials were characterized by density of sulfonic groups, SEM, EDS, Elementary Analysis, ATR-FTIR, Raman Spectroscopy, TG and XPS analysis. The data obtained showed that the functionalization occurred directly in the carbon chain of biochar, evidencing that higher carbonization temperatures resulted in carbonaceous catalysts of more stable polycondensed nature. The catalyst synthesized at 750 °C achieved conversion of 98.35% ± 1.105 and maintained in the third reaction cycle conversion of 89.35% ± 1.197. This catalyst also showed the highest content of sulfur groups, even after reuse processes. The increment of temperature and time in the reaction medium was able to improve the reuse capacity of relatively low stability catalysts. Thus, the results obtained show the impact of pyrolysis temperature on obtaining catalysts with greater activity and catalytic stability in esterification reactions, and in this way provide very important subsidies for the development of new heterogeneous sulfonated carbon-based catalysts, applied in the biodiesel production process

    Characterization of Lipid Extracts from Different Colors of Peach Palm Fruits—Red, Yellow, Green, and White—Obtained through Ultrasound-Assisted Green Extraction

    No full text
    This study represents a pioneering investigation and comparative analysis of lipid extracts from four different colors of peach palm (Bactris gasipaes Kunt) fruits—red, yellow, green, and white—by employing a green method based on ethanolic ultrasound-assisted extraction. This study examined the extraction yield, physico-chemical-quality attributes, chromatographic profiles (GC), color measurements, total carotenoid content, differential thermogravimetry (TG/DTA), and infrared spectroscopy (FTIR). The obtained lipid extracts displayed a high quality, considering the physico-chemical parameters of the Codex Alimentarius, and a fatty acids profile characterized by unsaturated fatty acids, notably omegas (ω-3, ω-6, and ω-9). The indices of atherogenicity (A.I.), thrombogenicity (I.T.), and hypocholesterolemic and hypercholesterolemic ratios revealed superior outcomes for the red peach palm lipid extract (approximately 0.35, 0.52, and 2.75, respectively), along with higher levels of β-carotene (748.36 µg of β-carotene per 100 g−1 of lipid extract) compared to the yellow, green, and white counterparts. Consequently, this research successfully demonstrates the efficacy of using a green extraction method in preserving the lipid’s quality, which can display cardiovascular functionality and thermal stability. These findings underscore the considerable potential of peach palm lipid extract as a valuable raw material for diverse industrial applications across various sectors. The results support its utilization in the production of functional food products and nutraceuticals due to its favorable fatty acid composition, potent antioxidant properties exhibited by its high β-carotene content, and notable cardiovascular functionality indices

    Tungsten oxide supported on copper ferrite : a novel magnetic acid heterogeneous catalyst for biodiesel production from low quality feedstock

    No full text
    This study aims to synthesize a WO3/CuFe2O4 catalyst through a wet impregnation method and use it as a new magnetic acid catalyst in the transesterification process of waste cooking oil (WCO). The results of the characterization by XRD, FTIR, SEM, EDS, TG/DTG, VSM and Surface Acidity showed that the obtained bifunctional catalyst has been successfully synthesized. The study of the reaction parameters, such as reaction temperature (140–180 °C), reaction time (1–5 h), molar ratio MeOH : oil (25 : 1–45 : 1) and catalyst loading (2–10% m m−1 ) was performed in the conversion of WCO into biodiesel via transesterification. The reactional behavior showed the following optimal reaction conditions: reaction temperature of 180 °C, reaction time of 3 h, molar ratio MeOH : oil of 45 : 1 and catalyst loading of 6%. Based on the results, biodiesel with a maximum ester content of 95.2% was obtained using the WO3/ CuFe2O4 magnetic catalyst under the optimal reaction conditions. The magnetic catalyst showed excellent catalytic and magnetic performance and it was applied in five reaction cycles with ester content above 80%. Biodiesel properties were found in accordance with ASTM limits. This research provided the development of a stable and reusable WO3/CuFe2O4 bifunctional catalyst for potential application in biodiesel production
    corecore