5 research outputs found

    X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries

    Get PDF
    We present an analysis method of normal incidence x-ray standing wave (NIXSW) data that allows detailed adsorption geometries of large and complex molecules to be retrieved. This method (Fourier vector analysis) is based on the comparison of both the coherence and phase of NIXSW data to NIXSW simulations of different molecular geometries as the relevant internal degrees of freedom are tuned. We introduce this analysis method using the prototypical molecular switch azobenzene (AB) adsorbed on the Ag(111) surface as a model system. The application of the Fourier vector analysis to AB/Ag(111) provides, on the one hand, detailed adsorption geometries including dihedral angles, and on the other hand, insights into the dynamics of molecules and their bonding to the metal substrate. This analysis scheme is generally applicable to any adsorbate, it is necessary for molecules with potentially large distortions, and will be particularly valuable for molecules whose distortion on adsorption can be mapped on a limited number of internal degrees of freedom

    Azobenzene/Ag(111)

    Get PDF
    The adsorption structure of the molecular switch azobenzene on Ag(111) is investigated by a combination of normal incidence x-ray standing waves and dispersion-corrected density functional theory. The inclusion of nonlocal collective substrate response (screening) in the dispersion correction improves the description of dense monolayers of azobenzene, which exhibit a substantial torsion of the molecule. Nevertheless, for a quantitative agreement with experiment explicit consideration of the effect of vibrational mode anharmonicity on the adsorption geometry is crucial

    Photoisomerization Ability of Molecular Switches Adsorbed on Au(111): Comparison between Azobenzene and Stilbene Derivatives

    No full text
    High resolution electron energy loss spectroscopy and two-photon photoemission was employed to derive the adsorption geometry, electronic structure, and the photoisomerization ability of the molecular switch tetra-tert-butyl-stilbene (TBS) on Au(111). The results are compared with the azobenzene analogue, tetra-tert-butyl-azobenzene (TBA), adsorbed on Au(111). TBS was found to adsorb on Au(111) in a planar (trans) configuration similar to TBA. The energetic positions of several TBS-induced electronic states were determined, and in comparison to TBA, the higher occupied molecular states (e.g., the highest occupied molecular orbital, HOMO) are located at similar energetic positions. While surface-bound TBA can be switched with light between its trans and cis configurations, in TBS this switching ability is lost. In TBA on Au(111), the trans → cis isomerization is driven by a substrate-mediated charge transfer process, whereby photogenerated hot holes in the Au d band lead to transient positive ion formation (transfer of the holes to the TBA HOMO level). Even though the energetic positions of the HOMOs in TBA and TBS are almost identical and thus a charge transfer should be feasible, this reaction pathway is obviously not efficient to induce the trans → cis isomerization in TBS on Au(111). Quantum chemical calculations of the potential energy surfaces for the free molecules support this conclusion. They show that cation formation facilitates the isomerization for TBA much more pronounced than for TBS due to the larger gradients at the Franck−Condon point and the much smaller barriers on the potential energy surface in the case of the TBA
    corecore