144 research outputs found

    Antiviral and cytotoxic activity of different plant parts of banana (Musa spp.)

    Get PDF
    Open Access Journal; Published online: 15 May 2020Chikungunya and yellow fever virus cause vector-borne viral diseases in humans. There is currently no specific antiviral drug for either of these diseases. Banana plants are used in traditional medicine for treating viral diseases such as measles and chickenpox. Therefore, we tested selected banana cultivars for their antiviral but also cytotoxic properties. Different parts such as leaf, pseudostem and corm, collected separately and extracted with four different solvents (hexane, acetone, ethanol, and water), were tested for in vitro antiviral activity against Chikungunya virus (CHIKV), enterovirus 71 (EV71), and yellow fever virus (YFV). Extracts prepared with acetone and ethanol from leaf parts of several cultivars exhibited strong (EC50 around 10 μg/mL) anti-CHIKV activity. Interestingly, none of the banana plant extracts (concentration 1–100 µg/mL) were active against EV71. Activity against YFV was restricted to two cultivars: Namwa Khom–Pseudostem–Ethanol (5.9 ± 5.4), Namwa Khom–Corm–Ethanol (0.79 ± 0.1) and Fougamou–Corm–Acetone (2.5 ± 1.5). In most cases, the cytotoxic activity of the extracts was generally 5- to 10-fold lower than the antiviral activity, suggesting a reasonable therapeutic window

    Antiques Interactive

    Get PDF
    We demonstrate the potential of automatically linking content from television broadcasts in the context of enriching the experience of users watching the broadcast. The demo focusses on (1) providing smooth user interface that allows users to look up web content and other audiovisual material that is directly related to the television content and (2) providing means for social interaction

    Antiques Interactive

    Get PDF
    We demonstrate the potential of automatically linking content from television broadcasts in the context of enriching the experience of users watching the broadcast. The demo focusses on (1) providing smooth user interface that allows users to look up web content and other audiovisual material that is directly related to the television content and (2) providing means for social interaction

    Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy

    No full text
    The prevalence of intellectual disability is around 3%; however, the etiology of the disease remains unclear in most cases. We identified a series of patients with X-linked intellectual disability presenting mutations in the Rad6a (Ube2a) gene, which encodes for an E2 ubiquitin-conjugating enzyme. Drosophila deficient for dRad6 display defective synaptic function as a consequence of mitochondrial failure. Similarly, mouse mRad6a (Ube2a) knockout and patient-derived hRad6a (Ube2a) mutant cells show defective mitochondria. Using in vitro and in vivo ubiquitination assays, we show that RAD6A acts as an E2 ubiquitin-conjugating enzyme that, in combination with an E3 ubiquitin ligase such as Parkin, ubiquitinates mitochondrial proteins to facilitate the clearance of dysfunctional mitochondria in cells. Hence, we identify RAD6A as a regulator of Parkin-dependent mitophagy and establish a critical role for RAD6A in maintaining neuronal function

    The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model

    Get PDF
    BACKGROUND: Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. METHODS: We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. FINDINGS: When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. INTERPRETATION: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. FUNDING: stated in the acknowledgment

    Insights into the molecular determinants involved in cap recognition by the vaccinia virus D10 decapping enzyme

    Get PDF
    Decapping enzymes are required for the removal of the 5′-end m7GpppN cap of mRNAs to allow their decay in cells. While many cap-binding proteins recognize the cap structure via the stacking of the methylated guanosine ring between two aromatic residues, the precise mechanism of cap recognition by decapping enzymes has yet to be determined. In order to get insights into the interaction of decapping enzymes with the cap structure, we studied the vaccinia virus D10 decapping enzyme as a model to investigate the important features for substrate recognition by the enzyme. We demonstrate that a number of chemically modified purines can competitively inhibit the decapping reaction, highlighting the molecular features of the cap structure that are required for recognition by the enzyme, such as the nature of the moiety at positions 2 and 6 of the guanine base. A 3D structural model of the D10 protein was generated which suggests amino acids implicated in cap binding. Consequently, we expressed 17 mutant proteins with amino acid substitutions in the active site of D10 and found that eight are critical for the decapping activity. These data underscore the functional features involved in the non-canonical cap-recognition by the vaccinia virus D10 decapping enzyme

    Molecular characterization and antiviral activity test of common drugs against echovirus 18 isolated in Korea

    Get PDF
    Genetic diversity and antiviral activity for five common antiviral drugs of echovirus (ECV) 5 isolated in Korea have been described. The present study extended these tests to a Korean ECV 18 isolate. An outbreak of aseptic meningitis caused by the ECV 18 isolate was reported in Korea in 2005, marking the first time this virus had been identified in the country since enterovirus surveillance began in 1993. Using a sample isolated from stool specimen of a 5-year-old male patient with aseptic meningitis, the complete genome sequence was obtained and was compared it with the Metcalf prototype strain. Unlike the ECV5 isolate, the 3' untranslated region had the highest identity value (94.2%) at the nucleotide level, while, at the amino acid level, the P2 region displayed the highest identity value (96.9%). These two strains shared all cleavage sites, with the exception of the 2B/2C site, which was RQ/NN in the Metcalf strain but RQ/NS in the Korean ECV 18 isolate. In Vero cells infected with the Korean ECV 18 isolate, no cytotoxicity was observed in the presence of azidothymidine, acyclovir, amantadine, lamivudine, or ribavirin, when the drugs were administered at a CC50 value >100 μg/mL. Of the five drugs, only amantadine (IC50: 4.97 ± 0.77 μg/mL, TI: 20.12) and ribavirin (IC50: 7.63 ± 0.87 μg/mL, TI: 13.11) had any antiviral activity against the Korean ECV 18 isolate in the five antiviral drugs. These antiviral activity effects were similar with results of the Korean ECV5 isolate

    Cell Type Mediated Resistance of Vesicular Stomatitis Virus and Sendai Virus to Ribavirin

    Get PDF
    Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro
    corecore