13 research outputs found

    Grand challenges in entomology: Priorities for action in the coming decades

    Get PDF
    Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change

    Sharing the burden: Cabbage stem flea beetle pest pressure and crop damage are lower in rapeseed fields surrounded by other rapeseed crops

    No full text
    The cabbage stem flea beetle (Psylliodes chrysocephala) is a significant pest of rapeseed (Brassica napus). Feeding by adult P. chrysocephala can cause severe leaf damage and larval infestation can reduce stem strength, both of which impact crop growth and development, causing substantial yield losses and economic damage. The structure of the agricultural landscape can regulate herbivorous pest populations through top-down and bottom-up processes. This has shown promise in regulating the populations of other herbivorous pests, but remains relatively unexplored for P. chrysocephala. Here we investigate how the structure of the agricultural landscape influences P. chrysocephala abundance (pest pressure) and associated crop damage. We also examine the effect of the landscape on natural enemies and their ability to regulate P. chrysocephala populations. We show that P. chrysocephala populations are primarily regulated through bottom-up processes. We identify adjacency to another rapeseed crop and the total proportion of rapeseed grown in the landscape as key factors influencing beetle pressure, crop damage, and larval infestation, but find no effect of host crop proportions grown in the previous year at the examined scales up to 1 km surrounding focal crops. We also observe positive effects of crop heterogeneity and semi-natural habitat proportions on natural enemy abundance and diversity; however, these increases had no direct impact on P. chrysocephala. Bottom-up processes appear to contribute to herbivorous pest regulation by diluting beetles in the landscape, and could represent an important mechanism for sustainably managing pest populations by adapting the proportions and neighbourhoods of rapeseed crops at small to large spatial scales

    Low prevalence of secondary endosymbionts in <i>Myzus persicae</i> (Hemiptera: Aphididae) and <i>Brevicoryne brassicae</i> (Hemiptera: Aphididae) sampled from rapeseed crops.

    No full text
    Abstract Peach-potato aphids, Myzus persicae Sulzer (Hemiptera: Aphididae), and cabbage aphids, Brevicoryne brassicae Linnaeus (Hemiptera:Aphididae), are significant herbivorous insects. Insecticides are routinely used to manage aphid populations; however, widespread use of insecticides has resulted in an increase in insecticide resistant aphid populations, increasing the need for biological control. Aphids can harbour a range of non-essential endosymbiotic bacteria and these endosymbionts are drivers of phenotypic diversity in aphids. A key endosymbiont-derived phenotype is protection against parasitism from parasitoid wasps, which can have consequences on the effectiveness of biological control. Endosymbiont prevalence has been reported to vary in M. persicae : Some M. persicae populations contain low endosymbiont frequencies (0-2%), while others can contain high endosymbiont frequencies (above 50%), and the underlying drivers behind this variability are unclear; no endosymbionts have yet been reported for B. brassicae . For the success of aphid control strategies to be estimated the presence of defensive endosymbionts that can disrupt the success of biocontrol agents needs to be determined in natural aphid populations. Here, we sampled aphids and mummies (parasitised aphids) from an important rapeseed production region in Germany and used multiplex PCR assays to characterise the endosymbiont communities. We found that aphids rarely harboured facultative endosymbionts, with 3.6% of M. persicae and 0% of B. brassicae populations forming facultative endosymbiont associations. This is comparable with endosymbiont prevalence described for M. persicae populations surveyed in Australia, Europe, Chile, and USA, but is in contrast with observations from China where M. persicae populations have more abundant and diverse endosymbiotic communities. </jats:p

    Low prevalence of secondary endosymbionts in aphids sampled from rapeseed crops in Germany.

    No full text
    Peach-potato aphids, Myzus persicae Sulzer (Hemiptera:Aphididae), and cabbage aphids, Brevicoryne brassicae Linnaeus (Hemiptera:Aphididae), are herbivorous insects of significant agricultural importance. Aphids can harbour a range of non-essential (facultative) endosymbiotic bacteria that confer multiple costs and benefits to the host aphid. A key endosymbiont-derived phenotype is protection against parasitoid wasps, and this protective phenotype has been associated with several defensive enodsymbionts. In recent years greater emphasis has been placed on developing alternative pest management strategies, including the increased use of natural enemies such as parasitoids wasps. For the success of aphid control strategies to be estimated the presence of defensive endosymbionts that can potentially disrupt the success of biocontrol agents needs to be determined in natural aphid populations. Here, we sampled aphids and mummies (parasitised aphids) from an important rapeseed production region in Germany and used multiplex PCR assays to characterise the endosymbiont communities. We found that aphids rarely harboured facultative endosymbionts, with 3.6% of M. persicae and 0% of B. brassicae populations forming facultative endosymbiont associations. This is comparable with endosymbiont prevalence described for M. persicae populations surveyed in Australia, Europe, Chile, and USA where endosymbiont infection frequencies range form 0-2%, but is in contrast with observations from China where M. persicae populations have more abundant and diverse endosymbiotic communities (endosymbionts present in over 50% of aphid populations)
    corecore