108 research outputs found

    Synchronizing Cardiac Cycle Phase with Foot Strike to Optimize Cardiac Performance in Patients with Chronic Systolic Heart Failure and Cardiac Resynchronization Therapy (CRT)

    Get PDF
    Despite advances in medical and Cardiac Resynchronization Therapy (CRT), patients with chronic systolic heart failure (HF) have persistent symptoms including dyspnea on exertion and exercise intolerance. Novel strategies to improve exercise performance in these patients, such as optimizing cardio-locomotor coupling, could be particularly beneficial to improve functional capacity. For example, runners display a lower heart rate and higher oxygen pulse, suggestive of a higher stroke volume (SV), when foot strike occurs in diastole. Whether patients with HF undergoing CRT can similarly increase SV is unknown. PURPOSE: To compare the effects of diastolic versus systolic foot strike timing on exercise hemodynamics in patients with HF and CRT. METHODS: Ten patients (Age: 58 ยฑ 17 years, 40% Female) with HF and previously implanted CRT pacemakers completed repeated 5-minute bouts of walking on a treadmill at a fixed but individualized speed (range: 1.5-3mph). Participants were randomized to walking to an auditory tone to synchronize their foot strike to either the systolic (ECG R-wave; 0 or 100%ยฑ15% or R-R interval) or diastolic phase (45ยฑ15% of the R-R interval) of their cardiac cycle. Participants were included if โ‰ฅ50% of their steps were valid (i.e. in time). Patients wore a chest strap with an attached ECG sensor and accelerometer (CounterpaceR). Foot strike timing and associated valid step counts were assessed via CounterpaceR or post-hoc analysis of foot strike waveforms. Cardiopulmonary parameters were measured breath by breath via indirect calorimetry and cardiac output was measured via acetylene rebreathing, with SV calculated as the quotient of cardiac output and heart rate. RESULTS: There was no difference in oxygen uptake between conditions (1.02 ยฑ 0.44 vs. 1.04 ยฑ 0.44 L/min, P=0.298). When compared to systolic walking, stepping in diastole was associated with higher SV (Diastolic: 80 ยฑ 28 vs. Systolic: 74 ยฑ 26 ml, P=0.003) and cardiac output (8.3 ยฑ 3.5 vs. 7.9 ยฑ 3.4 L/min, P=0.004); heart rate (paced) was not different between conditions (101 ยฑ 15 vs. 103 ยฑ 14 bpm, P=0.300). Mean arterial pressure was significantly lower during diastolic walking (85 ยฑ 12 vs. 98 ยฑ 20 mmHg, P=0.007). CONCLUSION: In patients with HF and previous CRT, synchronizing foot strike with diastole during walking increased SV and cardiac output and reduced arterial pressure. Our findings indicate that in such paced hearts, diastolic stepping increases oxygen delivery and decreases afterload, which may facilitate increased exercise capacity. Therefore, if added to pacemakers, this cardio-locomotor coupling technology may maximize CRT efficiency and increase exercise participation and quality of life in patients with HF

    A targeted decision aid for the elderly to decide whether to undergo colorectal cancer screening: development and results of an uncontrolled trial

    Get PDF
    Abstract: Background: Competing causes of mortality in the elderly decrease the potential net benefit from colorectal cancer screening and increase the likelihood of potential harms. Individualized decision making has been recommended, so that the elderly can decide whether or not to undergo colorectal cancer (CRC) screening. The objective is to develop and test a decision aid designed to promote individualized colorectal cancer screening decision making for adults age 75 and over. Methods: We used formative research and cognitive testing to develop and refine the decision aid. We then tested the decision aid in an uncontrolled trial. The primary outcome was the proportion of patients who were prepared to make an individualized decision, defined a priori as having adequate knowledge (10/15 questions correct) and clear values (25 or less on values clarity subscale of decisional conflict scale). Secondary outcomes included overall score on the decisional conflict scale, and preferences for undergoing screening. Results: We enrolled 46 adults in the trial. The decision aid increased the proportion of participants with adequate knowledge from 4% to 52% (p < 0.01) and the proportion prepared to make an individualized decision from 4% to 41% (p < 0.01). The proportion that preferred to undergo CRC screening decreased from 67% to 61% (p = 0. 76); 7 participants (15%) changed screening preference (5 against screening, 2 in favor of screening) Conclusion: In an uncontrolled trial, the elderly participants appeared better prepared to make an individualized decision about whether or not to undergo CRC screening after using the decision aid

    The effects of probiotic bacteria on glycaemic control in overweight men and women: a randomised controlled trial

    Get PDF
    Background/Objectives: Evidence from animal and in vitro models suggest a role of probiotic bacteria in improving glycaemic control and delaying the onset of type 2 diabetes. However, the evidence from controlled trials in humans is limited. The objective was to determine if the probiotic bacteria L. acidophilus La5 and B. animalis subsp lactis Bb12, supplemented in a whole food (yoghurt) or isolated (capsules) form, can improve biomarkers of glycaemic control. Subjects/methods: Following a 3-week washout period, 156 overweight men and women over 55 years (mean age: 67ยฑ8 years; mean body mass index (31ยฑ4 kg/m2) were randomized to a 6-week double-blinded parallel study. The four intervention groups were: (A) probiotic yoghurt plus probiotic capsules; (B) probiotic yoghurt plus placebo capsules; (C) control milk plus probiotic capsules; and (D) control milk plus placebo capsules. Outcome measurements, including fasting glucose, insulin, glycated haemoglobin and Homoeostasis Model Assessment of Insulin Resistance (HOMA-IR), were performed at baseline and week 6. Results: Relative to the milk-control group, probiotic yoghurt resulted in a significantly higher HOMA-IR (0.32ยฑ0.15, P=0.038), but did not have a significant effect on the other three measures of glycaemic control (P>0.05). Relative to placebo capsules, probiotic capsules resulted in a significantly higher fasting glucose (0.15ยฑ0.07 mmol/l, P=0.037), with no significant effect on the other three measures of glycaemic control (P>0.05). Further analyses did not identify other variables as contributing to these adverse findings. Conclusions: Data from this study does not support the hypothesis that L. acidophilus La5 and B. animalis subsp lactis Bb12, either in isolated form or as part of a whole food, benefit short-term glycaemic control. Indeed, there is weak data for an adverse effect of these strains on glucose homoeostasis

    miR-125b Promotes Early Germ Layer Specification through Lin28/let-7d and Preferential Differentiation of Mesoderm in Human Embryonic Stem Cells

    Get PDF
    Unlike other essential organs, the heart does not undergo tissue repair following injury. Human embryonic stem cells (hESCs) grow indefinitely in culture while maintaining the ability to differentiate into many tissues of the body. As such, they provide a unique opportunity to explore the mechanisms that control human tissue development, as well as treat diseases characterized by tissue loss, including heart failure. MicroRNAs are small, non-coding RNAs that are known to play critical roles in the regulation of gene expression. We profiled the expression of microRNAs during hESC differentiation into myocardial precursors and cardiomyocytes (CMs), and determined clusters of human microRNAs that are specifically regulated during this process. We determined that miR-125b overexpression results in upregulation of the early cardiac transcription factors, GATA4 and Nkx2-5, and accelerated progression of hESC-derived myocardial precursors to an embryonic CM phenotype. We used an in silico approach to identify Lin28 as a target of miR-125b, and validated this interaction using miR-125b knockdown. Anti-miR-125b inhibitor experiments also showed that miR-125b controls the expression of miRNA let-7d, likely through the negative regulatory effects of Lin28 on let-7. We then determined that miR-125b overexpression inhibits the expression of Nanog and Oct4 and promotes the onset of Brachyury expression, suggesting that miR-125b controls the early events of human CM differentiation by inhibiting hESC pluripotency and promoting mesodermal differentiation. These studies identified miR-125b as an important regulator of hESC differentiation in general, and the development of hESC-derived mesoderm and cardiac muscle in particular. Manipulation of miR-125b-mediated pathways may provide a novel approach to directing the differentiation of hESC-derived CMs for cell therapy applications

    Elevated miR-499 Levels Blunt the Cardiac Stress Response

    Get PDF
    The heart responds to myriad stresses by well-described transcriptional responses that involve long-term changes in gene expression as well as more immediate, transient adaptations. MicroRNAs quantitatively regulate mRNAs and thus may affect the cardiac transcriptional output and cardiac function. Here we investigate miR-499, a microRNA embedded within a ventricular-specific myosin heavy chain gene, which is expressed in heart and skeletal muscle.We assessed miR-499 expression in human tissue to confirm its potential relevance to human cardiac gene regulation. Using a transgenic mouse model, we found that elevated miR-499 levels caused cellular hypertrophy and cardiac dysfunction in a dose-dependent manner. Global gene expression profiling revealed altered levels of the immediate early stress response genes (Egr1, Egr2 and Fos), รŸ-myosin heavy chain (Myh7), and skeletal muscle actin (Acta1). We verified the effect of miR-499 on the immediate early response genes by miR-499 gain- and loss-of-function in vitro. Consistent with a role for miR-499 in blunting the response to cardiac stress, asymptomatic miR-499-expressing mice had an impaired response to pressure overload and accentuated cardiac dysfunction.Elevated miR-499 levels affect cardiac gene expression and predispose to cardiac stress-induced dysfunction. miR-499 may titrate the cardiac response to stress in part by regulating the immediate early gene response

    Collaborative planning approach to inform the implementation of a healthcare manager intervention for hispanics with serious mental illness: a study protocol

    Get PDF
    Background: This study describes a collaborative planning approach that blends principles of community-based participatory research (CBPR) and intervention mapping to modify a healthcare manager intervention to a new patient population and provider group and to assess the feasibility and acceptability of this modified intervention to improve the physical health of Hispanics with serious mental illness (SMI) and at risk for cardiovascular disease (CVD). Methods: The proposed study uses a multiphase approach that applies CBPR principles and intervention-mapping steps--an intervention-planning approach--to move from intervention planning to pilot testing. In phase I, a community advisory board composed of researchers and stakeholders will be assembled to learn and review the intervention and make initial modifications. Phase II uses a combination of qualitative methods--patient focus groups and stakeholder interviews--to ensure that the modifications are acceptable to all stakeholders. Phase III uses results from phase II to further modify the intervention, develop an implementation plan, and train two care managers on the modified intervention. Phase IV consists of a 12-month open pilot study (N = 30) to assess the feasibility and acceptability of the modified intervention and explore its initial effects. Lastly, phase V consists of analysis of pilot study data and preparation for future funding to develop a more rigorous evaluation of the modified intervention. Discussion: The proposed study is one of the few projects to date to focus on improving the physical health of Hispanics with SMI and at risk for CVD by using a collaborative planning approach to enhance the transportability and use of a promising healthcare manager intervention. This study illustrates how blending health-disparities research and implementation science can help reduce the disproportionate burden of medical illness in a vulnerable population

    Identification of Novel Targets of CSL-Dependent Notch Signaling in Hematopoiesis

    Get PDF
    Somatic activating mutations in the Notch1 receptor result in the overexpression of activated Notch1, which can be tumorigenic. The goal of this study is to understand the molecular mechanisms underlying the phenotypic changes caused by the overexpression of ligand independent Notch 1 by using a tetracycline inducible promoter in an in vitro embryonic stem (ES) cells/OP9 stromal cells coculture system, recapitulating normal hematopoiesis. First, an in silico analysis of the promoters of Notch regulated genes (previously determined by microarray analysis) revealed that the motifs recognized by regulatory proteins known to mediate hematopoiesis were overrepresented. Notch 1 does not bind DNA but instead binds the CSL transcription factor to regulate gene expression. The in silico analysis also showed that there were putative CSL binding sites observed in the promoters of 28 out of 148 genes. A custom ChIP-chip array was used to assess the occupancy of CSL in the promoter regions of the Notch1 regulated genes in vivo and showed that 61 genes were bound by activated Notch responsive CSL. Then, comprehensive mapping of the CSL binding sites genome-wide using ChIP-seq analysis revealed that over 10,000 genes were bound within 10 kb of the TSS (transcription start site). The majority of the targets discovered by ChIP-seq belong to pathways that have been shown by others to crosstalk with Notch signaling. Finally, 83 miRNAs were significantly differentially expressed by greater than 1.5-fold during the course of in vitro hematopoiesis. Thirty one miRNA were up-regulated and fifty two were down-regulated. Overexpression of Notch1 altered this pattern of expression of microRNA: six miRNAs were up-regulated and four were down regulated as a result of activated Notch1 overexpression during the course of hematopoiesis. Time course analysis of hematopoietic development revealed that cells with Notch 1 overexpression mimic miRNA expression of cells in a less mature stage, which is consistent with our previous biological characterization
    • โ€ฆ
    corecore