844 research outputs found

    'Heaven starts at your parents' feet' : adolescent bowing to parents and associated spiritual attitudes

    Get PDF
    In a quantitative survey of religious attitudes and practices in a multi-religious sample of 369 school pupils aged between 13 and 15 in London, the practice of bowing to parents was found widespread in 22% of adolescents spanning several religious affiliations and ethnicities – especially Buddhists, Hindus and those of Indian, African and ‘Other Asian’ ethnicity. Whether an adolescent bowed correlated significantly with spiritual attitudes such as wanting to abstain from alcohol, hearing religious stories, being inspired by religious festivals and liking the idea of seeing God in everything. Findings suggest bowing to parents can have religious significance on all three levels of Jackson’s Interpretive Approach and therefore cannot be regarded as a ‘cultural accretion’ of religion. Study of bowing to parents could form a unifying exercise in shared values for study of religion in the plural classroom and facilitate community cohesion in certain religious membership groups

    Christianity, paranormal belief and personality: a study among 13- to 16-year-old pupils in England and Wales

    Get PDF
    Studies concerning the changing landscapes of religiosity and spirituality in the lives of young people in England and Wales draw attention to decline in traditional religiosity and to growth in alternative spiritualities. The present study examined whether such alternative spiritualities occupy the same personality space as traditional religiosity. A sample of 2,950 13- to 16-year-old pupils attending 11 secondary schools in England and Wales completed the Francis Scale of Attitude toward Christianity and an index of paranormal belief, alongside the abbreviated-form Junior Eysenck Personality Questionnaire Revised. The data demonstrated that these two forms of belief were related in different ways to Eysenck's dimensional model of personality space. While attitude toward Christianity occupied the space defined by low psychoticism scores (tendermindedness) and high lie scale scores (social conformity), paranormal belief was related to high psychoticism scores (toughmindedness) and was independent of lie scale scores. These findings support the view that alternative spiritualities may be associated with different personalities

    Relaxation kinetics in two-dimensional structures

    Full text link
    We have studied the approach to equilibrium of islands and pores in two dimensions. The two-regime scenario observed when islands evolve according to a set of particular rules, namely relaxation by steps at low temperature and smooth at high temperature, is generalized to a wide class of kinetic models and the two kinds of structures. Scaling laws for equilibration times are analytically derived and confirmed by kinetic Monte Carlo simulations.Comment: 6 pages, 7 figures, 1 tabl

    CMBfit: Rapid WMAP likelihood calculations with normal parameters

    Full text link
    We present a method for ultra-fast confrontation of the WMAP cosmic microwave background observations with theoretical models, implemented as a publicly available software package called CMBfit, useful for anyone wishing to measure cosmological parameters by combining WMAP with other observations. The method takes advantage of the underlying physics by transforming into a set of parameters where the WMAP likelihood surface is accurately fit by the exponential of a quartic or sextic polynomial. Building on previous physics based approximations by Hu et.al., Kosowsky et.al. and Chu et.al., it combines their speed with precision cosmology grade accuracy. A Fortran code for computing the WMAP likelihood for a given set of parameters is provided, pre-calibrated against CMBfast, accurate to Delta lnL ~ 0.05 over the entire 2sigma region of the parameter space for 6 parameter ``vanilla'' Lambda CDM models. We also provide 7-parameter fits including spatial curvature, gravitational waves and a running spectral index.Comment: 14 pages, 8 figures, References added, accepted for publication in Phys.Rev.D., a Fortran code can be downloaded from http://space.mit.edu/home/tegmark/cmbfit

    Cultured circulating tumor cells and their derived xenografts for personalized oncology

    Get PDF
    AbstractRecent cancer research has demonstrated the existence of circulating tumor cells (CTCs) in cancer patient's blood. Once identified, CTC biomarkers will be invaluable tools for clinical diagnosis, prognosis and treatment. In this review, we propose ex vivo culture as a rational strategy for large scale amplification of the limited numbers of CTCs from a patient sample, to derive enough CTCs for accurate and reproducible characterization of the biophysical, biochemical, gene expressional and behavioral properties of the harvested cells. Because of tumor cell heterogeneity, it is important to amplify all the CTCs in a blood sample for a comprehensive understanding of their role in cancer metastasis. By analyzing critical steps and technical issues in ex vivo CTC culture, we developed a cost-effective and reproducible protocol directly culturing whole peripheral blood mononuclear cells, relying on an assumed survival advantage in CTCs and CTC-like cells over the normal cells to amplify this specified cluster of cancer cells

    Constraining Cut-off Physics in the Cosmic Microwave Background

    Full text link
    We investigate the ability to constrain oscillatory features in the primordial power spectrum using current and future cosmic microwave background observations. In particular, we study the observability of an oscillation arising from imprints of physics at the cut-off energy scale. We perform a likelihood analysis on the WMAP data set, and find that the current data set constrains the amplitude of the oscillations to be less than 0.77 at 2-sigma, consistent with a power spectrum without oscillations. In addition, we investigate the fundamental limitations in the measurement of oscillation parameters by studying the constraints from a cosmic variance limited experiment. We find that such an experiment is capable of constraining the amplitude of such oscillations to be below 0.005, implying that reasonable models with cut-off energy scales Lambda>200 H_infl are unobservable through the microwave background.Comment: 16 pages, 7 figures; PRD accepted versio

    Demonstration of a novel technique to measure two-photon exchange effects in elastic e±pe^\pm p scattering

    Full text link
    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct e±pe^\pm p comparisons, which has the potential to make precise measurements over a broad range in Q2Q^2 and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2Q^2 and scattering angle. Nonetheless, this measurement yields a data sample for e±pe^\pm p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: R=1.027±0.005±0.05R=1.027\pm0.005\pm0.05 for =0.206=0.206 GeV2^2 and 0.830≀ϔ≀0.9430.830\leq \epsilon\leq 0.943

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    • 

    corecore