986 research outputs found

    Transmission losses and economy loading by the use of admittance constants

    Get PDF
    "July 6, 1964.""Reprinted from Power Apparatus and Systems, IEEE October, 1963.""In order to operate a power system at optimum economy, the production costs and transmission losses must be coordinated. A straightforward derivation of the co-ordination conditions is given. A widely adopted method of finding transmission penalty factors used so-called "B-constants." These constants are not easily modified to consider changes in the transmission system or deviation from "base-case" system conditions. By starting with the equilibrium equation of a power system written in terms of admittance constants, a concise expression for the total losses of a power transmission system which does not neglect shunt paths to neutral or the effect of off-nominal turns ratios is developed. Following this same approach, an easily modified, approximate expression for the penalty factor is formed. Any errors incurred by using this approximate penalty factor are small when compared with the inaccuracy of the original data on production costs. Several test cases on hypothetical systems are given. The generation schedules for economic dispatch, using approximate penalty factors, compare quite favorably in actual hourly costs with the costs of schedules obtained by exact penalty factors."--Page 1

    Optimising Boltzmann codes for the Planck era

    Full text link
    High precision measurements of the Cosmic Microwave Background (CMB) anisotropies, as can be expected from the Planck satellite, will require high-accuracy theoretical predictions as well. One possible source of theoretical uncertainty is the numerical error in the output of the Boltzmann codes used to calculate angular power spectra. In this work, we carry out an extensive study of the numerical accuracy of the public Boltzmann code CAMB, and identify a set of parameters which determine the error of its output. We show that at the current default settings, the cosmological parameters extracted from data of future experiments like Planck can be biased by several tenths of a standard deviation for the six parameters of the standard Lambda-CDM model, and potentially more seriously for extended models. We perform an optimisation procedure that leads the code to achieve sufficient precision while at the same time keeping the computation time within reasonable limits. Our conclusion is that the contribution of numerical errors to the theoretical uncertainty of model predictions is well under control -- the main challenges for more accurate calculations of CMB spectra will be of an astrophysical nature instead.Comment: 13 pages, 4 figure

    Particle characterisation of rail sands for understanding tribological behaviour

    Get PDF
    Low adhesion between a train’s wheel and the rail can cause performance and safety issues, costing the UK rail industry ~£345 m/annum. Sand is applied to the wheel/rail interface to increase traction when low adhesion conditions are present. In order to improve performance, an understanding of how particles are entrained into and act within the interface is needed. This paper outlines a particle characterisation framework and applies it to sands used in the rail industry: Leighton Buzzard (LB), Central European (CE), and Derbyshire Youlgreave (DY) sand. The largest difference found in this framework was between the sand’s particle size, LB being largest, then CE, then DY. A high pressure torsion rig measured traction when the sands were applied to dry, wet, and leaf extract contaminated conditions, the latter two representing low adhesion conditions. All sands had no impact on wheel/rail adhesion in dry conditions; in low adhesion conditions DY had little influence, whereas LB and CE were found to increase traction. Particles in dry conditions had no effect on test specimen surface roughness, whereas roughness increased when sand was applied in low adhesion conditions. The developed characterisation framework provides a platform for assessing prospective adhesion enhancing particles

    Shape analysis of railway ballast stones : curvature-based calculation of particle angularity

    Get PDF
    Particle shape analysis is conducted, to compare two types of railway ballast: Calcite and Kieselkalk. Focus lies on the characterisation of particle angularity using 3D scanner data. In the literature, angularity is often characterised using 2D data, as these types of data are easier to collect. 3D scanner data contain a vast amount of information (e.g. curvatures) which can be used for shape analysis and angularity characterisation. Literature approaches that use 3D data are often not thoroughly tested, due to a lack of test cases. In this work, two new curvature-based angularity indices are introduced and compared to one from the literature. Analytical test bodies with shapes ranging from spherical towards cubic are used for a first plausibility test. Then, 3D scans of ballast stones are compared to artificially rounded meshes. Only one out of three evaluated angularity indices seem to be suited to characterise angularity correctly in all of the above tests: the newly introduced scaled Willmore energy. A complete shape analysis of the scanned ballast stones is conducted and no difference between the two types of ballast can be seen regarding form, angularity, roughness, sphericity or convexity index. These findings of shape analysis are set in the context of previous works, where experimental results and DEM simulations of uniaxial compression tests and direct shear tests were presented for the same ballast types

    Numerical modelling of particle entrainment in the wheel–rail interface

    Get PDF
    The process of applying sand particles to increase the traction between wheel and rail is reported to be less than 20% efficient. To better understand entrainment efficiency, the process is simulated using the Discrete Element Method. The simulation results are validated against full-scale experimental observations in terms of entrainment efficiency and particle velocity for ten case studies with different positioning of the sand nozzle. The numerical simulations confirm the experimental observations wherein the highest efficiency can be achieved when the sander is aimed at the wheel/rail nip. When aiming the sander at the wheel, the values of entrainment efficiency from simulations and experiments show some discrepancy which can be related to the numerical assumptions. Calculating coefficients of traction between the rail and wheel from the simulation data for the four cases of an un-sanded contact, and with the sander aimed at the rail, the nip, and the wheel (all with the same angle) show an increase in the coefficient of traction for all sanded cases compared to the un-sanded case

    DEM modelling of railway ballast using the Conical Damage Model: a comprehensive parametrisation strategy

    Get PDF
    Despite ongoing research, the parametrisation of a DEM model is a challenging task, as it depends strongly on the particle shape representation used, particle-particle contact law and the simulated applications: for railway ballast e.g. lab tests or track conditions. The authors previously modelled railway ballast with a DEM model using a simple particle shape. The DEM model was parametrised, by trial-and-error, to compression and direct shear test results. A good agreement between DEM model and experimental results was achieved only when the Conical Damage Model (CDM) was used as the contact law. Compared to the well-known linear-spring Cundall-Strack law or the Hertz-Mindlin law, this contact law takes into account additional physical effects (e.g. edge breakage) occurring in the experiment. Little is known on the influence of the CDM model parameters on the simulation results or on possible parameter ambiguities. This lack of knowledge hinders a reliable and efficient parametrisation of DEM models using different particle shapes. Both points are addressed in this work in detail by investigating a DEM model for railway ballast using one simple particle shape. Suggestions for a parametrisation strategy of reduced computational effort are formulated and tested using a second particle shape. In future works, the newly presented parametrisation strategy can help to calibrate different DEM models and to study the influence of particle shape

    Structural investigation of sulfobetaines and phospholipid monolayers at the air-water interface

    Get PDF
    Mixtures of sulfobetaine based lipids with phosphocholine phospholipids are of interest in order to study the interactions between zwitterionic surfactants and the phospholipids present in cell membranes. In this study we have investigated the structure of mixed monolayers of sulfobetaines and phosphocholine phospholipids. The sulfobetaine used has a single 18-carbon tail, and is referred to as SB3-18, and the phospholipid used is DMPC. Surface pressure-area isotherms of the samples were used to determine whether any phase transitions were present during the compression of the monolayers. Neutron and X-ray reflectometry were then used to investigate the structure of these monolayers perpendicular to the interface. We found that the average headgroup and tail layer thickness was reasonably consistent across all mixtures, with a variation of less than 3 Å reported in the total thickness of the monolayers at each surface pressure. However, by selective deuteration of the two components of the monolayers, it was found that the two components have different tail layer thicknesses. For the mixture with equal compositions of DMPC and SB3-18 or with a higher composition of DMPC the tail tilts were found to be constant, resulting in a greater tail layer thickness for SB3-18 due to its longer tail. For the mixture higher in SB3-18 this was not the case, the tail tilt angle for the two components was found to be different and DMPC was found to have a greater tail layer thickness than SB3-18 as a result.</p

    Sanded wheel–rail contacts: experiments on sand crushing behaviour

    Get PDF
    In railway operation, the sanding process is used to overcome low adhesion conditions in the wheel–rail contact. In the literature, previously conducted research has been experimental, e.g., measuring adhesion coefficients (ACs) under different contact conditions (dry, wet, 
) or applying different sands. Under dry conditions, sanding can reduce measured ACs, while under wet conditions different types of rail sand can leave ACs unchanged or increase adhesion. Despite active research, the physical mechanisms causing the change in ACs under sanded conditions are still poorly understood. A possible remedy is the development of advanced models of sanding including local effects. As a basis for such a model, this study presents experimental results concerning single grain crushing behaviour of two types of rail sand under dry and wet contact conditions. Firstly, initial breakage behaviour is investigated with focus on the particle fragments’ size and spread as only fragments within the running band are available to influence the AC during roll-over. Secondly, single grain crushing tests are conducted under realistic wheel–rail load showing the formation of solidified clusters of sand fragments, as well as their size and thickness. This information is important for understanding mechanisms and for future physics-based modelling of the sanding process in wheel–rail contacts

    Methodology to resolve the transport equation with the discrete ordinates code TORT into the IPEN/MB-01 reactor

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Computer Mathematics in 2014, available online: http://www.tandfonline.com/10.1080/00207160.2013.799668Resolution of the steady-state Neutron Transport Equation in a nuclear pool reactor is usually achieved by means of two different numerical methods: Monte Carlo (stochastic) and Discrete Ordinates (deterministic). The Discrete Ordinates method solves the Neutron Transport Equation for a set of selected directions, obtaining a set of directional equations and solutions for each equation which are the angular flux. In order to deal with the energy dependence, an energy multi-group approximation is commonly performed, obtaining a set of equations depending on the number of energy groups. In addition, spatial discretization is also required and the problem is solved by sweeping the geometry mesh. However, special cross-sections are required due to the energy and directional discretization, thus a methodology based on NJOY99 code capabilities has been used. Finally, in order to demonstrate the capability of this method, the 3D discrete ordinates code TORT has been applied to resolve the IPEN/MB-01 reactor.The authors wish to thank Departamento de Engenharia Nuclear da UFMG and Instituto de Pesquisas Energeticas e Nucleares for all data and support.Bernal García, Á.; Abarca Giménez, A.; Barrachina Celda, TM.; Miró Herrero, R. (2014). Methodology to resolve the transport equation with the discrete ordinates code TORT into the IPEN/MB-01 reactor. International Journal of Computer Mathematics. 91(1):113-123. doi:10.1080/00207160.2013.799668S113123911Rhoades, W. A., & Simpson, D. B. (1997). The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3). doi:10.2172/58226
    • 

    corecore