5,497 research outputs found

    Micromachined Millimetre-Wave Passive Components at 38 and 77 GHz

    Get PDF
    A precision micro-fabrication technique has been developed for millimetre-wave components of air-filled three-dimensional structures, such as rectangular coaxial lines or waveguides. The devices are formed by bonding several layers of micromachining defined slices with a thickness of a few hundred micrometres. The slices are thickphotoresist SU8 defined by photolithography, or silicon with a pattern defined by deep reactive ion etching; both are coated with gold by evaporation. The process is simple, and low-cost, as compared with conventional precision metal machining, but yields mm-wave components with good performance. The components are light weight and truly airfilled with no dielectric support. This paper reviews several of these micromachined mm-wave components at 38 and 77 GHz for communications and radar applications

    Physarum attraction: Why slime mold behaves as cats do?

    Get PDF
    We discuss potential chemical substances responsible for attracting acellular slime mold Physarun polycephalum to valerian root. The contributes toward fundamental research into pheromones and chemo-attracts of primitive organisms such as slime molds. The results show that significant information could be gained about the action of compounds on higher organisms

    Three and half million year history of moisture availability of South West Africa: Evidence from ODP site 1085 biomarker records

    Get PDF
    Ocean Drilling Program Site 1085 provides a continuous marine sediment record off southern South West Africa for at least the last three and half million years. The n-alkane ∂13 C record from this site records changes in past vegetation and provides an indication of the moisture availability of SW Africa during this time period. Very little variation, and no apparent trend, is observed in the n-alkane δ13C record, suggesting stable long-term conditions despite significant changes in East African tectonics and global climate. Slightly higher n-alkane δ13C values occur between 3.5 and 2.7 Ma suggesting slightly drier conditions than today. Between 2.5 and 2.7 Ma there is a shift to more negative n-alkane δ13C values suggesting slightly wetter conditions during a ~ 0.2 Ma episode that coincides with the intensification of Northern Hemisphere Glaciation (iNHG). From 2.5 to 0.4 Ma the n-alkane δ13C values are very consistent, varying by less than ± 0.5‰ and suggesting little or no long-term change in the moisture availability of South West Africa over the last 2.5 million years. This is in contrast to the long-term drying trend observed further north offshore from the Namib Desert and in East Africa. A comparison of the climate history of these regions suggests that Southern Africa may have been an area of long-term stability over the last 3.5 Myrs

    Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure

    Get PDF
    A novel optical fiber displacement sensor based on composite interference established within a balloon-shaped bent multimode (BSBM) fiber structure is described and experimentally demonstrated. The BSBM fiber structure is realized by bending a straight single-mode–multimode–single-mode (SMS) fiber structure into a balloon shape using a length of capillary tube to fix the shape of the structure. Owing to the bend in the multimode waveguide, the original undistorted multimode interference pattern is changed, and an extra Mach–Zehnder interferometer is effectively introduced within the multimode fiber (MMF) section at a suitable bending radius. This established composite interference greatly improves the displacement sensing performance of the SMS fiber structure. A maximum displacement sensitivity of 0.51 dB/μm over the displacement range of 0–100 μm at the operating wavelength of 1564.7 nm is achieved experimentally. Based on its easy fabrication process, low cost, and high measurement sensitivity, the sensor of this investigation could be a realistic candidate in the high-accuracy displacement measurement field

    What are dynamic optimization problems?

    Get PDF
    Dynamic Optimization Problems (DOPs) have been widely studied using Evolutionary Algorithms (EAs). Yet, a clear and rigorous definition of DOPs is lacking in the Evolutionary Dynamic Optimization (EDO) community. In this paper, we propose a unified definition of DOPs based on the idea of multiple-decision-making discussed in the Reinforcement Learning (RL) community. We draw a connection between EDO and RL by arguing that both of them are studying DOPs according to our definition of DOPs. We point out that existing EDO or RL research has been mainly focused on some types of DOPs. A conceptualized benchmark problem, which is aimed at the systematic study of various DOPs, is then developed. Some interesting experimental studies on the benchmark reveal that EDO and RL methods are specialized in certain types of DOPs and more importantly new algorithms for DOPs can be developed by combining the strength of both EDO and RL methods

    Evaluation of sputtered nickel oxide, cobalt oxide and nickel–cobalt oxide on n-type silicon photoanodes for solar-driven O₂(g) evolution from water

    Get PDF
    Thin films of nickel oxide (NiO_x), cobalt oxide (CoO_x) and nickel–cobalt oxide (NiCoO_x) were sputtered onto n-Si(111) surfaces to produce a series of integrated, protected Si photoanodes that did not require deposition of a separate heterogeneous electrocatalyst for water oxidation. The p-type transparent conductive oxides (p-TCOs) acted as multi-functional transparent, antireflective, electrically conductive, chemically stable coatings that also were active electrocatalysts for the oxidation of water to O₂(g). Relative to the formal potential for water oxidation to O₂, E^(o′)(O₂/H₂O), under simulated Air Mass (AM)1.5 illumination the p-TCO-coated n-Si(111) photoanodes produced mutually similar open-circuit potentials of −270 ± 20 mV, but different photocurrent densities at E^(o′)(O₂/H₂O), of 28 ± 0.3 mA cm⁻² for NiO_x, 18 ± 0.3 mA cm⁻² for CoO_x and 24 ± 0.5 mA cm⁻² for NiCoO_x. The p-TCOs all provided protection from oxide growth for extended time periods, and produced stable photocurrent densities from n-Si in 1.0 M KOH(aq) (ACS grade) under potential control at E^(o′)(O₂/H₂O) for >400 h of continuous operation under 100 mW cm−2 of simulated AM1.5 illumination

    A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure

    Get PDF
    A relative humidity (RH) sensor based on a simple singlemode-side polished multimode-singlemode (SSPMS) fiber hybrid structure is investigated, which is capable of working over a relatively high-temperature range, at which many RH sensors based on moisture sensitive material coatings cannot operate. The beam propagation method is used to analyze the light transmission characteristics within the side polished multimode fiber (SPMMF) structure. Experimental results show that the SPMMF surface roughness has a significant influence on the sensor\u27s humidity sensing performance, as a result of the adsorption and desorption of water molecules along the side polished surface. A higher surface roughness results in an increased RH sensitivity. It is concluded that the SSPMS fiber structure based RH sensor can achieve around 0.069 dB/%RH within the humidity range of 30%RH–90%RH for a temperature range of 70 °C to 90 °C. In addition, the temperature cross-sensitivity has been investigated experimentally. The developed fiber optic sensor in this investigation provides a simple and effective approach for RH measurement in a variety of production applications

    A Stabilized, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting Cell Incorporating Earth-Abundant Electrocatalysts with Steady-State pH Gradients and Product Separation Enabled by a Bipolar Membrane

    Get PDF
    An efficient, stable, and intrinsically safe solar water-splitting device is demonstrated using a III–V tandem junction photoanode, an acid-stable, earth-abundant hydrogen evolution catalyst, and a bipolar membrane. The integrated photoelectrochemical cell operates under a steady-state pH gradient and achieves ≈10% solar-to-hydrogen conversion efficiency, >100 h of stability in a large (>1 cm^2) photoactive area in relation to most previous reports

    Molecular characterization of firefly nuptial gifts: a multi-omics approach sheds light on postcopulatory sexual selection

    Get PDF
    Postcopulatory sexual selection is recognized as a key driver of reproductive trait evolution, including the machinery required to produce endogenous nuptial gifts. Despite the importance of such gifts, the molecular composition of the non-gametic components of male ejaculates and their interactions with female reproductive tracts remain poorly understood. During mating, male Photinus fireflies transfer to females a spermatophore gift manufactured by multiple reproductive glands. Here we combined transcriptomics of both male and female reproductive glands with proteomics and metabolomics to better understand the synthesis, composition and fate of the spermatophore in the common Eastern firefly, Photinus pyralis. Our transcriptome of male glands revealed up-regulation of proteases that may enhance male fertilization success and activate female immune response. Using bottom-up proteomics we identified 208 functionally annotated proteins that males transfer to the female in their spermatophore. Targeted metabolomic analysis also provided the first evidence that Photinus nuptial gifts contain lucibufagin, a firefly defensive toxin. The reproductive tracts of female fireflies showed increased gene expression for several proteases that may be involved in egg production. This study offers new insights into the molecular composition of male spermatophores, and extends our understanding of how nuptial gifts may mediate postcopulatory interactions between the sexes.Tuft University. Faculty Research Fund (FRAC (S.M.L.)Arnold and Mabel Beckman Foundation. Beckman Young InvestigatorPew Scholars Program in the Biomedical SciencesSearle Scholars Progra

    Tactile feedback display with spatial and temporal resolutions.

    Get PDF
    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications
    corecore