48,987 research outputs found

    Skyrme and Wigner crystals in graphene

    Full text link
    At low-energy, the band structure of graphene can be approximated by two degenerate valleys (K,K′)(K,K^{\prime}) about which the electronic spectra of the valence and conduction bands have linear dispersion relations. An electronic state in this band spectrum is a linear superposition of states from the AA and BB sublattices of the honeycomb lattice of graphene. In a quantizing magnetic field, the band spectrum is split into Landau levels with level N=0 having zero weight on the B(A)B(A) sublattice for the % K(K^{\prime}) valley. Treating the valley index as a pseudospin and assuming the real spins to be fully polarized, we compute the energy of Wigner and Skyrme crystals in the Hartree-Fock approximation. We show that Skyrme crystals have lower energy than Wigner crystals \textit{i.e.} crystals with no pseudospin texture in some range of filling factor ν\nu around integer fillings. The collective mode spectrum of the valley-skyrmion crystal has three linearly-dispersing Goldstone modes in addition to the usual phonon mode while a Wigner crystal has only one extra Goldstone mode with a quadratic dispersion. We comment on how these modes should be affected by disorder and how, in principle, a microwave absorption experiment could distinguish between Wigner and Skyrme crystals.Comment: 14 pages with 11 figure

    Micromachined Millimetre-Wave Passive Components at 38 and 77 GHz

    Get PDF
    A precision micro-fabrication technique has been developed for millimetre-wave components of air-filled three-dimensional structures, such as rectangular coaxial lines or waveguides. The devices are formed by bonding several layers of micromachining defined slices with a thickness of a few hundred micrometres. The slices are thickphotoresist SU8 defined by photolithography, or silicon with a pattern defined by deep reactive ion etching; both are coated with gold by evaporation. The process is simple, and low-cost, as compared with conventional precision metal machining, but yields mm-wave components with good performance. The components are light weight and truly airfilled with no dielectric support. This paper reviews several of these micromachined mm-wave components at 38 and 77 GHz for communications and radar applications

    Uncovering CDM halo substructure with tidal streams

    Full text link
    Models for the formation and growth of structure in a cold dark matter dominated universe predict that galaxy halos should contain significant substructure. Studies of the Milky Way, however, have yet to identify the expected few hundred sub-halos with masses greater than about 10^6 Msun. Here we propose a test for the presence of sub-halos in the halos of galaxies. We show that the structure of the tidal tails of ancient globular clusters is very sensitive to heating by repeated close encounters with the massive dark sub-halos. We discuss the detection of such an effect in the context of the next generation of astrometric missions, and conclude that it should be easily detectable with the GAIA dataset. The finding of a single extended cold stellar stream from a globular cluster would support alternative theories, such as self-interacting dark matter, that give rise to smoother halos.Comment: 7 pages, 7 figures, submitted to MNRA

    7.2% efficient polycrystalline silicon photoelectrode

    Get PDF
    After etching, n-type cast polycrystalline silicon photoanodes immersed in a solution of methanol and a substituted ferrocene reagent exhibit photoelectrode efficiencies of 7.2%Âą0.7% under simulated AM2 illumination. Scanning laser spot data indicate that the grain boundaries are active; however, the semiconductor/liquid contact does not display the severe shunting effects which are observed at a polycrystalline Si/Pt Schottky barrier. Evidence for an interfacial oxide on the operating polycrystalline Si photoanode is presented. Some losses in short circuit current can be ascribed to bulk semiconductor properties; however, despite these losses, photoanodes fabricated from polycrystalline substrates exhibit efficiencies comparable to those of single crystal material. Two major conclusions of our studies are that improved photoelectrode behavior in the polycrystalline silicon/methanol system will primarily result from changes in bulk electrode properties and from grain boundary passivation, and that Fermi level pinning by surface states does not prevent the design of efficient silicon-based liquid junctions

    A 14% efficient nonaqueous semiconductor/liquid junction solar cell

    Get PDF
    We describe the most efficient semiconductor/liquid junction solar cell reported to date. Under W‐halogen (ELH) illumination, the device is a 14% efficient two‐electrode solar cell fabricated from an n‐type silicon photoanode in contact with a nonaqueous electrolyte solution. The cell′s central feature is an ultrathin electrolyte layer which simultaneously reduces losses which result from electrode polarization, electrolyte light absorption, and electrolyte resistance. The thin electrolyte layer also eliminates the need for forced convection of the redox couple and allows for precise control over the amount of water (and other electrolyte impurities) exposed to the semiconductor. After one month of continuous operation under ELH light at 100 mW/cm^2, which corresponds to the passage of over 70 000 C/cm^2, thin‐layer cells retained over 90% of their efficiency. In addition, when made with Wacker Silso cast polycrystalline Si, cells yield an efficiency of 9.8% under simulated AMl illumination. The thin‐layer cells employ no external compensation yet surpass their corresponding experimental (three‐electrode) predecessors in efficiency
    • …
    corecore