3,736 research outputs found

    Concorde noise-induced building vibrations John F. Kennedy International Airport

    Get PDF
    The outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at six home sites along with the associated vibration levels in the walls, windows, and floors of these test homes. Limited subjective tests conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise showed that both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Preliminary results indicate that the relationship between window vibration and aircraft noise is: (1) linear, with vibration levels being accurately predicted from OASPL levels measured near the window; (2) consistent from flyover to flyover for a given aircraft type under approach conditions; (3) no different for Concorde than for other conventional jet transports (in the case of window vibrations induced under approach power conditions); and (4) relatively high levels of window vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde source characteristics

    Concorde noise-induced building vibrations: John F. Kennedy International Airport

    Get PDF
    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics

    Concorde Noise-Induced Building Vibrations, Montgomery County, Maryland

    Get PDF
    A series of studies are reported to assess the noise induced building vibrations associated with Concorde operations. The levels of induced vibration and associated indoor/outdoor noise levels resulting from aircraft and nonaircraft events in selected homes, historic and other buildings near Dulles International Airport were recorded. The building response resulting from aircraft operations was found to be directly proportional to the overall sound pressure level and approximately independent of the aircraft type. The noise levels and, consequently, the response levels were observed to be higher for the Concorde operations than for the CTOL operations. Furthermore, the vibration could be closely reproduced by playing aircraft noise through a loudspeaker system located near the vibration measurement location. Nonaircraft events such as door closing were again observed to result in higher response levels than those induced by aircraft

    Noise-Induced Building Vibrations Caused by Concorde and Conventional Aircraft Operations at Dulles and Kennedy International Airports

    Get PDF
    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded, as were the associated vibration levels in the walls, windows, and floors at building test sites. In addition, limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Representative peak levels of aircraft noise-induced building vibrations are reported and comparisons are made with structural damage criteria and with vibration levels induced by common domestic events. In addition, results of a pilot study are reported which indicate the human detection threshold for noise-induced floor vibrations

    Concorde noise-induced building vibrations for Sully Plantation, Chantilly, Virginia

    Get PDF
    A study to assess the noise-induced building vibrations associated with Concorde operations is presented. The approach is to record the levels of induced vibrations and associated indoor/outdoor noise levels in selected homes, historic and other buildings near Dulles and Kennedy International Airports. Presented is a small, representative sample of data recorded at Sully Plantation, Chantilly, Virginia during the period of May 20 through May 28, 1976. Recorded data provide relationships between the vibration levels of walls, floors, windows, and the noise associated with Concorde operations (2 landings and 3 takeoffs), other aircraft, nonaircraft sources, and normal household activities. Results suggest that building vibrations resulting from aircraft operations were proportional to the overall sound pressure levels and relatively insensitive to spectral differences associated with the different types of aircraft. Furthermore, the maximum levels of vibratory response resulting from Concorde operations were higher than those associated with conventional aircraft. The vibrations of nonaircraft events were observed in some cases to exceed the levels resulting from aircraft operations. These nonaircraft events are currently being analyzed in greater detail

    Concorde noise-induced building vibrations, John F. Kennedy International Airport

    Get PDF
    The outdoor/indoor noise levels and associated vibration levels resulting from aircraft and nonaircraft events were recorded at eight homesites and a school. In addition, limited subjective tests were conducted to examine the human detection/annoyance thresholds for building vibration and rattle caused by aircraft noise. Presented herein are the majority of the window and wall vibration data recorded during Concorde and subsonic aircraft overflights

    The Middle Pleistocene terraces of the central Waveney valley, Earsham, south Norfolk, UK

    Get PDF
    Although substantial work has been done on the pre-glacial terraces of East Anglia, very little systematic work has been done to understand the origin of river terraces in East Anglia that have formed since ice last covered the region. This paper records the results of studies of exposures and borehole records in ‘classical’ Quaternary terrace landforms that are considered to have formed since the Anglian (MIS 12) Glaciation, in the middle Waveney Valley. These features have been examined in terms of their morphological and sedimentological properties, in order to provide a detailed record of their form and composition, understand their processes of formation, and identify their stratigraphical status. The results show that the main body of the highest terrace (Homersfield Terrace, Terrace 3) is not composed of river sediments, but of shallow marine sediments, and is a remnant of early Middle Pleistocene Wroxham Crag. River sediments, in the form of Anglian age (MIS 12) glaciofluvial Aldeby Sands and Gravels also exist in the area as a channel fill, cut through the Wroxham Crag, and reflect outwash erosion and sedimentation from a relatively proximal ice margin to the west. The results mean that the interpretations previously presented for the terrace landforms of the middle Waveney valley are not applicable. The issue of why the terrace stratigraphy, hitherto identified in East Anglia cannot be related to that for the River Thames to the south and the rivers of Midland England to the west, still requires further research

    Quantitative lipoprotein subclass and low molecular weight metabolite analysis in human serum and plasma by 1H NMR spectroscopy in a multilaboratory trial

    Get PDF
    We report an extensive 600 MHz NMR trial of a quantitative lipoprotein and small molecule measurements in human blood serum and plasma. Five centers with eleven 600 MHz NMR spectrometers were used to analyze 98 samples including: 20 QCs, 37 commercially sourced, paired serum and plasma samples and 2 National Institute of Science and Technology, NIST, reference material 1951c replicates. Samples were analyzed using rigorous protocols for sample preparation and experimental acquisition. A commercial lipoprotein subclass analysis was used to quantify 105 lipoprotein subclasses and 24 low molecular weight metabolites from the nuclear magnetic resonance, NMR, spectra. For all spectrometers, the instrument specific variance in measuring internal quality controls, QCs, was lower than the percentage described by the National Cholesterol Education Program, NCEP, criteria for lipid testing (triglycerides<2.7%, cholesterol<2.8%; LDL-cholesterol<2.8%; HDL-cholesterol<2.3%), showing exceptional reproducibility for direct quantitation of lipoproteins in both matrices. The average RSD for the 105 lipoprotein parameters in the 11 instruments was 4.6% and 3.9% for the two NIST samples while it was 38% and 40% for the 37 commercially sourced plasmas and sera, respectively, showing negligible analytical compared to biological variation. The coefficient of variance, CV, obtained for the quantification of the small molecules across the 11 spectrometers was below 15% for 20 out of the 24 metabolites analyzed. This study provides further evidence of the suitability of NMR for high-throughput lipoprotein subcomponent analysis and small molecule quantitation with the exceptional reproducibility required for clinical and other regulatory settings
    • …
    corecore