760 research outputs found

    Dark Before Light: Testing the Cosmic Expansion History through the Cosmic Microwave Background

    Full text link
    The cosmic expansion history proceeds in broad terms from a radiation dominated epoch to matter domination to an accelerated, dark energy dominated epoch. We investigate whether intermittent periods of acceleration are possible in the early universe -- between Big Bang nucleosynthesis (BBN) and recombination and beyond. We establish that the standard picture is remarkably robust: observations of anisotropies in the cosmic microwave background exclude any extra period of accelerated expansion between 1 \leq z \lesssim 10^5 (corresponding to 5\times10^{-4}\ {\rm eV} \leq T \lesssim 25\ {\rm eV}).Comment: 7 pages, 5 figure

    Effects of targeted memory reactivation on cortical networks

    Get PDF
    Sleep is a complex physiological process with an important role in memory consolidation characterised by a series of spatiotemporal changes in brain activity and connectivity. Here, we investigate how task-related responses differ between pre-sleep wake, sleep, and post-sleep wake. To this end, we trained participants on a serial reaction time task using both right and left hands using Targeted Memory Reactivation (TMR), in which auditory cues are associated with learned material and then re-presented in subsequent wake or sleep periods in order to elicit memory reactivation. The neural responses just after each cue showed increased theta band connectivity between frontal and other cortical regions, as well as between hemispheres, in slow wave sleep compared to pre- or post-sleep wake. This pattern was consistent across the cues associated with both right- and left-handed movements. We also searched for hand-specific connectivity and found that this could be identified in within-hemisphere connectivity after TMR cues during sleep and post-sleep sessions. The fact that we could identify which hand had been cued during sleep suggests that these connectivity measures could potentially be used to determine how successfully memory is reactivated by our manipulation. Collectively, these findings indicate that TMR modulates the brain cortical networks showing clear differences between wake and sleep connectivity patterns

    Development of 2-(4-pyridyl)-benzimidazoles as PKN2 chemical tools to probe cancer

    Get PDF
    Kinases are signalling proteins which have proven to be successful targets for the treatment of a variety of diseases, predominantly in cancers. However, only a small proportion of kinases (<20%) have been investigated for their therapeutic viability, likely due to the lack of available chemical tools across the kinome. In this work we describe initial efforts in the development of a selective chemical tool for protein kinase N2 (PKN2), a relatively unexplored kinase of interest in several types of cancer. The most successful compound, 5, has a measured IC50 of 0.064 Ī¼M against PKN2, with ca. 17-fold selectivity over close homologue, PKN1

    Enantioselective Intramolecular C-H Amination Catalyzed by Engineered Cytochrome P450 Enzymes Inā€…Vitro and Inā€…Vivo

    Get PDF
    Nitrogen activation: Though P450 enzymes are masters of oxygen activation and insertion into C-H bonds, their ability to use nitrogen for the same purpose has so far not been explored. Engineered variants of cytochrome P450_(BM3) have now been found to catalyze intramolecular C-H aminations in azide substrates. Mutations to two highly conserved residues significantly increased this activity

    Infrared light elicits endothelium-dependent vasodilation in isolated occipital arteries of the rat via soluble guanylyl cyclase-dependent mechanisms

    Get PDF
    The left and right occipital arteries provide blood supply to afferent cell bodies in the ipsilateral nodose and petrosal ganglia. This supply is free of an effective blood-ganglion barrier, so changes in occipital artery blood flow directly affect the access of circulating factors to the afferent cell bodies. The application of infrared (IR) light to modulate neural and other cell processes has yielded information about basic biological processes within tissues and is gaining traction as a potential therapy for a variety of disease processes. To address whether IR can directly modulate vascular function, we performed wire myography studies to determine the actions of IR on occipital arteries isolated from male Sprague-Dawley rats. Based on our previous research that functionally-important differences exist between occipital artery segments close to their origin at the external carotid artery (ECA) and those closer to the nodose ganglion, the occipital arteries were dissected into two segments, one closer to the ECA and the other closer to the nodose ganglion. Segments were constricted with 5-hydroxytryptamine to a level equal to 50% of the maximal response generated by the application of a high (80Ā mM) concentration of K+ ions. The direct application of pulsed IR (1,460Ā nm) for 5Ā s produced a rapid vasodilation in occipital arteries that was significantly more pronounced in segments closest to the ECA, although the ECA itself was minimally responsive. The vasodilation remained for a substantial time (at least 120Ā s) after cessation of IR application. The vasodilation during and following cessation of the IR application was markedly diminished in occipital arteries denuded of the endothelium. In addition, the vasodilation elicited by IR in endothelium-intact occipital arteries was substantially reduced in the presence of a selective inhibitor of the nitric oxide-sensitive guanylate cyclase, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). It appears that IR causes endothelium-dependent, nitric-oxide-mediated vasodilation in the occipital arteries of the rat. The ability of IR to generate rapid and sustained vasodilation may provide new therapeutic approaches for restoring or improving blood flow to targeted tissues

    Beyond Scale-Free Networks: integrating Multilayer Social Networks With Molecular Clusters in the Local Spread of Covid-19

    Get PDF
    This study evaluates the scale-free network assumption commonly used in COVID-19 epidemiology, using empirical social network data from SARS-CoV-2 Delta variant molecular local clusters in Houston, Texas. We constructed genome-informed social networks from contact and co-residence data, tested them for scale-free power-law distributions that imply highly connected hubs, and compared them to alternative models (exponential, log-normal, power-law with exponential cutoff, and Weibull) that suggest more evenly distributed network connections. Although the power-law model failed the goodness of fit test, after incorporating social network ties, the power-law model was at least as good as, if not better than, the alternatives, implying the presence of both hub and non-hub mechanisms in local SARS-CoV-2 transmission. These findings enhance our understanding of the complex social interactions that drive SARS-CoV-2 transmission, thereby informing more effective public health interventions

    Hypoxia releases S-nitrosocysteine from carotid body glomus cellsā€”relevance to expression of the hypoxic ventilatory response

    Get PDF
    We have provided indirect pharmacological evidence that hypoxia may trigger release of the S-nitrosothiol, S-nitroso-L-cysteine (L-CSNO), from primary carotid body glomus cells (PGCs) of rats that then activates chemosensory afferents of the carotid sinus nerve to elicit the hypoxic ventilatory response (HVR). The objective of this study was to provide direct evidence, using our capacitive S-nitrosothiol sensor, that L-CSNO is stored and released from PGCs extracted from male Sprague Dawley rat carotid bodies, and thus further pharmacological evidence for the role of S-nitrosothiols in mediating the HVR. Key findings of this study were that 1) lysates of PGCs contained an S-nitrosothiol with physico-chemical properties similar to L-CSNO rather than S-nitroso-L-glutathione (L-GSNO), 2) exposure of PGCs to a hypoxic challenge caused a significant increase in S-nitrosothiol concentrations in the perfusate to levels approaching 100Ā fM via mechanisms that required extracellular Ca2+, 3) the dose-dependent increases in minute ventilation elicited by arterial injections of L-CSNO and L-GSNO were likely due to activation of small diameter unmyelinated C-fiber carotid body chemoafferents, 4) L-CSNO, but not L-GSNO, responses were markedly reduced in rats receiving continuous infusion (10Ā Ī¼mol/kg/min, IV) of both S-methyl-L-cysteine (L-SMC) and S-ethyl-L-cysteine (L-SEC), 5) ventilatory responses to hypoxic gas challenge (10% O2, 90% N2) were also due to the activation of small diameter unmyelinated C-fiber carotid body chemoafferents, and 6) the HVR was markedly diminished in rats receiving L-SMC plus L-SEC. This data provides evidence that rat PGCs synthesize an S-nitrosothiol with similar properties to L-CSNO that is released in an extracellular Ca2+-dependent manner by hypoxia

    Caveats in reporting of national vaccine uptake

    Get PDF
    Funding: EAVE II is supported by the Medical Research Council (MR/R008345/1) with the support of BREATHE - The Health Data Research Hub for Respiratory Health [MC_PC_19004], which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. Additional support has been provided through Public Health Scotland and Scottish Government DG Health and Social Care, the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (grant ref MC_PC_20058) and the Lifelong Health and Wellbeing study as part of the National Core Studies (MC_PC_20030).Peer reviewe
    • ā€¦
    corecore