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The left and right occipital arteries provide blood supply to afferent cell bodies in
the ipsilateral nodose and petrosal ganglia. This supply is free of an effective
blood-ganglion barrier, so changes in occipital artery blood flow directly affect the
access of circulating factors to the afferent cell bodies. The application of infrared
(IR) light to modulate neural and other cell processes has yielded information
about basic biological processes within tissues and is gaining traction as a potential
therapy for a variety of disease processes. To address whether IR can directly
modulate vascular function, we performed wire myography studies to determine
the actions of IR on occipital arteries isolated from male Sprague-Dawley rats.
Based on our previous research that functionally-important differences exist
between occipital artery segments close to their origin at the external carotid
artery (ECA) and those closer to the nodose ganglion, the occipital arteries were
dissected into two segments, one closer to the ECA and the other closer to the
nodose ganglion. Segments were constricted with 5-hydroxytryptamine to a level
equal to 50% of the maximal response generated by the application of a high
(80 mM) concentration of K+ ions. The direct application of pulsed IR (1,460 nm)
for 5 s produced a rapid vasodilation in occipital arteries that was significantly
more pronounced in segments closest to the ECA, although the ECA itself was
minimally responsive. The vasodilation remained for a substantial time (at least
120 s) after cessation of IR application. The vasodilation during and following
cessation of the IR application was markedly diminished in occipital arteries
denuded of the endothelium. In addition, the vasodilation elicited by IR in
endothelium-intact occipital arteries was substantially reduced in the presence
of a selective inhibitor of the nitric oxide-sensitive guanylate cyclase, 1H-[1,2,4]
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oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). It appears that IR causes endothelium-
dependent, nitric-oxide-mediated vasodilation in the occipital arteries of the rat.
The ability of IR to generate rapid and sustained vasodilation may provide new
therapeutic approaches for restoring or improving blood flow to targeted tissues.

KEYWORDS

infrared light, occipital arteries, endothelium-dependent vasodilation, nitric oxide, soluble
guanylate cyclase

1 Introduction

The left and right nodose ganglia house the cell bodies of
ipsilateral vagal afferent fibers whereas the left and right petrosal
ganglia house the cell bodies of ipsilateral glossopharyngeal afferent
fibers (Abboud et al., 1976; Thorén, 1979; Spyer, 1981; Lacolley et al.,
2006a; Lacolley et al., 2006b; Iturriaga et al., 2007; Retamal et al., 2014).
The arterial blood supply to ganglia is of well-established importance
to the activity of sensory cell bodies, as is whether these blood supplies
have true blood-ganglion barriers that allow for the exchange of
nutrients such as oxygen and glucose but prevent larger molecular
weight factors to access the sensory cell bodies (see Davis and Story,
1943; Chungcharoen et al., 1952; Chai and Wang, 1966; Chai et al.,
1967; Jacobs and Comroe, 1971; Pugh and Kalia, 1982; van der Krans
and Hoogland, 1983; Ling andWong, 1988; Ten Tusscher et al., 1989;
Lacolley et al., 2006a; Lacolley et al., 2006b). Early evidence for the lack
of an effective blood-ganglion barrier in the nodose ganglion was
elegantly demonstrated by Ten Tusscher et al. (1989). They found that
intravenous injections of large molecular weight horseradish
peroxidase in rats resulted in its ready appearance between sensory
ganglion cells and their satellite cells in the nodose ganglion, whereas it
was absent in the interstitial space between ganglion cells and their
satellite cells within superior cervical, medial cervical and
pterygopalatine ganglia (although horseradish peroxidase lined
satellite cell membranes).

There is now compelling evidence that the nodose and petrosal
ganglia are supplied by a branch of the internal carotid artery, which
has a tight blood-ganglion barrier that denies blood-borne factors
(other than nutrients) access to sensory cell bodies (Ten Tusscher
et al., 1989; Lacolley et al., 2006a; Lacolley et al., 2006b). Intriguingly,
the nodose and petrosal ganglia also receive direct arterial blood
supply from their ipsilateral occipital arteries, which branch off
respective external carotid arteries (ECA). Both ganglia, despite the
presence of satellite cells, are devoid of effective blood-ganglion
barriers such that circulating factors like 5-hydroxytryptamine (5-
HT) gain ready access to sensory cell bodies in the ganglia to affect
the activity of vagal and glossopharyngeal afferents (Ten Tusscher
et al., 1989; Lacolley et al., 2006a; Lacolley et al., 2006b). We
postulated that circulating factors such as 5-HT, angiotensin II,
arginine vasopressin, and S-nitrosothiols in the occipital arterial
blood generated by cardiorespiratory challenges (e.g., hypertension,
obstructive sleep apnea, diabetes, sepsis) may directly modulate
vagal and glossopharyngeal afferent activity via actions on their
functionally-active membrane-bound receptors that exist on the
plasma membranes of the sensory cell bodies (Higashi and Nishi,
1982; Lewis et al., 1986; Allen et al., 1988; Phillips et al., 1990; Gao
et al., 1992; Widdop et al., 1992; Owen at el, 2005; Lacolley et al.,
2006c; Lewis et al., 2006; Moreira et al., 2009).

We have examined the in vitro responsiveness of rat occipital
arteries via wire myography methods (Chelko et al., 2013; Chelko
et al., 2014; Lewis et al., 2021) and found significant differences in
responsiveness to a variety of agonists based on the proximity of the
arterial segment to its origin at the external carotid artery (ECA).
When the occipital arteries were bisected and examined, we found
that the distal segment (closer to the nodose ganglion) was much
more reactive than the proximal segment (that directly arising from
the ECA) to agonists including 5-HT, a selective 5-HT2 receptor
agonist, α-CH3-5-HT, arginine vasopressin (AVP), and a selective
V1 receptor agonist, Phe2, Ile3, and Orn8-vasopressin (Chelko et al.,
2013; Chelko et al., 2014). More recently, we determined that the
segmental differences in vasoreactivity were largely dependent on
the presence of an intact endothelium (Lewis et al., 2021). When the
endothelium was removed, though both segments were more
reactive to the same agonists, the increase in the reactivity of the
proximal segment meant the total responses were almost equal to
the distal (Lewis et al., 2021).

Direct application of IR light has been demonstrated as a
method of optical stimulation of nerves that does not require
additional interventions like the addition of photoreactive
molecules or genetic manipulation (see Thompson et al., 2014 for
review). The direct application of IR light to neural tissues can elicit a
spatially selective inhibition (Duke et al., 2013; Lothet et al., 2017),
and the extracellular ion concentration can modulate the sensitivity
of neural tissues to IR light (Zhuo et al., 2021). There is compelling
evidence that the application of red/near IR elicits endothelium-
dependent vasodilation in murine facial arteries (Keszler et al., 2017)
and hindlimb (Keszler et al., 2022), and that this vasodilation may
involve the release of nitric oxide from pre-formed pools of
S-nitrosothiols and/or nitrosylated proteins (Keszler et al., 2018;
Keszler et al., 2019; Weihrauch et al., 2021). Based on the evidence in
other arteries, it may be possible that these pre-formed pools of
S-nitrosothiols in murine facial arteries are stored within
cytoplasmic vesicles that are subject to exocytosis (Seckler et al.,
2020). However, the mechanisms by which pulsed IR (between the
wavelength of 1,400–2,100 nm) are thought cause neuromodulation
involves the generation of temperature changes to modulate action
potentials (Ganguly et al., 2019), whereas light in the 670 nm range
affects vasoreactivity by liberating vasoactive nitric oxide precursor
species via photobiomodulation (Pierrefiche et al., 2007; Ganguly
et al., 2019). So, the mechanisms by which IR elicits physiological
responses have been shown to be substantively different based on the
specific wavelengths used (600 range versus 1,400–2,100). As
members of our group and others have demonstrated that IR
light in the 1,460 range has specific neuromodulatory effects
(Duke et al., 2013; Lothet et al., 2017; Ganguly et al., 2019; Zhuo
et al., 2021) not seen at other wavelengths, we wanted to test IR in
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this range directly on vascular function, specifically in a vessel type
with a demonstrated difference in endothelial function, but
consistent smooth muscle function, along the length of the vessel
(Lewis et al., 2021).We hypothesized that IR light at 1,460 nmwould
have rapid vasoactive effects that are largely dependent on the
presence of a functional endothelium. At present, there is no
published evidence as to the potential effects of IR in the
1,460 nm range on vascular tone or endothelial function.

Based on the importance of the occipital arterial blood supply to
the function of sensory cell bodies within the nodose ganglion, the
major aims of the present study were to 1) determined the effects of
brief, pulsed episodes of IR (using a 1,460 nm laser diode) on the
vasoreactivity of the proximal (those closer to the ECA) and distal
(those closer to the nodose ganglion) occipital artery segments from
(presumably normotensive) adult male Sprague-Dawley rats, 2) to
determine the role of the vascular endothelium in the responses of
the proximal and distal segments to IR, and 3) establish whether the
selective inhibitor of nitric oxide-mediated activation of soluble-
guanylate cyclase, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one
(ODQ) (43), modulates IR responses in intact arteries.

2 Materials and methods

2.1 Permissions, rats, and surgical
procedures

All studies were carried out in accordance with the NIH Guide
for Care and Use of Laboratory Animals (8th edition, revised in
2011) and in strict compliance with the ARRIVE (Animal Research:
Reporting of In Vivo Experiments) guidelines. All protocols
involving the use of rats were approved by the Animal Care and
Use Committee of Case Western Reserve University. Adult male
Sprague Dawley rats (300–350 g body weight) were purchased from
Harlan Industries (Madison, WI, United States). The rats were given
4 days to recover from transport before use. All studies were done in
a quiet room with a relative humidity of 51% ± 2% at a room
temperature of 21.2°C ± 0.2°C.

2.2 Artery isolation and small vessel
myography setup

Rats were decapitated and their heads were immediately
placed on ice in a physiological saline solution (PSS)
containing (mM) NaCl 118, NaHCO3 24, KCl 4, glucose 5.9,
MgSO4 1, NaH2PO4 0.435, and CaCl2 1.8. Occipital arteries (OA,
250–400 μm internal diameter) were isolated and bisected into
proximal (closer to ECA) and distal (closer to nodose ganglion)
tubular segments and mounted separately on small vessel
myographs (Model 500A, Danish Myo Technology, Denmark),
as detailed previously (Chelko et al., 2013; Chelko et al., 2014;
Lewis et al., 2021). After equilibrating for 30 min in PSS gassed
with 21% O2, 5% CO2, and 74% N2 (pH 7.4, 37.0°C), occipital
arteries were stretched to a force calculated as previously
described (Mulvany and Halpern, 1977) for arteries that
experience systemic blood pressure. Arteries were normalized
by passively stretching in 2 mN increments every 60 s until an

internal circumference (IC) was reached that equated to a
transmural pressure of 13.3 kPa (IC100). Next, the IC100 is
multiplied by the normalization factor of 0.9 to determine the
optimal IC for each segment to produce maximal vascular
reactivity (IC1), and the IC is adjusted to this calculated value.
Maximal contractile responses of occipital artery segments to a
depolarizing stimulus were established by (HiK) depolarization,
i.e., exposing them to potassium PSS with 80 mM K+ (isotonic
replacement of Na+ by K+) as detailed previously (Robertson
et al., 2003; Robertson et al., 2007; Robertson et al., 2008; Chelko
et al., 2013; Chelko et al., 2014).

2.3 Removal of the endothelium

All vessels were given one exposure to HiK for 2 min. After
washing with PSS, endothelium denudation was accomplished by
the gentle rubbing of the luminal surface of IPA with a human
forearm hair. To ensure that this procedure had not damaged the
smooth muscle, we exposed denuded OA segments to HiK.
Segments that did not generate at least 75% of the tension
measured during the response to 5HT of the equilibration
procedure were excluded. Endothelial disruption was confirmed
at the end of the experiment by the abolition of the vasodilator
response to acetylcholine (1 μM) in arteries preconstricted with 5HT
(10 μM).

2.4 Evaluation of the effects of IR light on
vascular reactivity

A representative diagram of the IR experiments is provided in
Figure 1. Vessels were pre-constricted with 5HT to a level equivalent
to 50% of the maximal response generated by HiK depolarization.
Next, a 400 μm diameter optic fiber (P400 VIS-NIR, Ocean Optics,
Largo, FL) was positioned 30 μm from optic fiber tip to tissue using a
micromanipulator. A 1460 nm laser diode (MCM-102, SemiNex,
Peabody, MA) delivered 200 μsec pulses of 0.3 mJ IR at 200 Hz for a
5-s duration. The fiber-to-artery distance was achieved by using a
micromanipulator to lower the fiber into contact with the artery and
then retract by 30 µm. As the arteries are stretched between the
wires, the fiber was positioned perpendicular to the plane of the
vessel, applying light radially to the tissue. For certain vessels, 10 μM
ODQ was added into the PSS at least 10 min before IR light
application.

2.5 Radiant exposure calculations

Radiant exposures (radiant energy received by a surface per
unit area, J/cm2) at the tip of the optical fiber were calculated by
dividing the pulse energies by the laser spot size which is the area
of the fiber tip (Jenkins et al., 2010). Pulse energies were
measured using a pyroelectric energy meter (Nova II, Ophir
Photonics), and spot size using the average fiber diameter.
Laser light was delivered via a 400 ± 8 µm diameter flat-
polished multi-mode optical fiber (Ocean Optics, Largo, FL).
We, therefore, calculated radiant exposure to be:
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pulse energy inmJ( )/ π * radius of f iber tip in um( )2( )
� radiant exposure in J/cm2

0.3mJ( )/ π * 200 um( )2( ) � 0.239 J/cm2 at f iber tip, per pulse( )

2.6 Effects of IR light on agonist-induced
vasoconstriction and vasorelaxation

Concentration-dependent response curves were established for
5-HT (1 nM–10 μM) and then acetylcholine (ACh, 1 nM to 10 μM)
on occipital arteries and internal carotid arteries after exposure to
the IR light. 5-HT and ACh responses were also collected from
separate occipital artery segments that were not exposed to IR to
provide naïve agonist responses to determine the IR effect on the

tissue response. ACh responses were tested using the maximal
constriction generated by 10 μM 5-HT.

2.7 Data analyses

All data are presented as mean ± SEM. Data for IR responses
(Figures 3–5) were evaluated using repeated measures two-way
ANOVA with the Geisser-Greenhouse correction. Data in Figures
3A, B were further compared via Šídák’s multiple comparisons test.
Data comparing pre-constriction levels, responses to HiK before and
after IR (Figure 6), and data describing the cumulative addition of 5-
HT (Figure 7) and ACH (Figure 8) were analyzed via ordinary one-
way ANOVA with Tukey’s multiple comparisons test. Statistical
analyses were performed using GraphPad Prism software

FIGURE 1
Representation of a standard myography experiment evaluating the effects of IR light. First, the vessel is stretched via the automated normalization
process to a tension equivalent to the appropriate mean internal pressure. Second, one HiK exposure is conducted. If required, the endothelium is then
removed, followed by twomore HiK exposures. Next, 5-hydroxytryptamine (5-HT pre-tone) is added to each segment to elicit approximately 50% of the
maximal HiK response. The IR light fiber is positioned over the artery, then the segment is exposed to the IR. Next, the 5HT is washed from the bath,
and another HiK is performed. Finally, concentration-response curves are established for 5HT and acetylcholine (ACH).

FIGURE 2
Typical examples of the effects of a 5-s exposure of infrared light to the contractile force (mN) of intact and endothelium-denuded proximal
occipital artery segments. The term “HiK” and the time bar below the trace denote the application of 80 mM K+ PSS for 2 min 5-hydroxytryptamine (5-HT
pre-tone) was added to each segment to elicit approximately 50% of the maximal HiK response. The term “Fiber Positioned” refers to the use of a
micromanipulator to touch the fiber to the transducer arm which registers as a lowering of force, retracting 30 μm, then using the pilot light to
position over the artery center. IR light is then delivered 200 μs pulses of IR at 200 Hz for a 5-s duration.
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(GraphPad Software, Inc., La Jolla, CA). Each n value refers to a
biological replicate.

3 Results

3.1 Effects of IR light on occipital artery
segments with 5HT-induced pretone

Typical examples of the effects of a 5-s IR exposure on the
contractile force of intact and endothelium-denuded proximal
occipital artery segments are shown in Figure 2. The IR-induced
responses were substantially greater in the intact segments (top
panel) than in the endothelium-denuded segments (bottom panel).
The mean and standard error of the pre-constriction values, as
calculated as a percentage of the maximal HiK+ response, are as
follows: Proximal = 39.9 ± 5.4 (n = 12), Proximal Denuded = 51.4 ±
7.6 (n = 7), Proximal ODQ = 48.4 ± 8.8 (n = 6), Distal = 54.7 ± 4.4
(n = 12), Distal Denuded = 57.9 ± 6.3 (n = 7), and Distal ODQ =
58.8 ± 9.4 (n = 6). These pre-constriction values were not
determined to be significantly different via ordinary one-way
ANOVA. Vasodilation caused by IR was significantly greater in
the intact proximal OA segments versus the intact distal segments
(Figure 3A) and was sustained for at least 2 min after termination of

the IR exposure.While there was a small, yet significant, reduction in
the response in the distal occipital artery segment after the removal
of the endothelium (Figure 3D), the effects of denudation on the IR
response were much more pronounced in the proximal arteries
(Figure 3C). With the removal of the endothelium, both the
proximal and distal occipital artery segments had a small
response to IR, but the responses were not distinguishably
different (Figure 3B). The addition of 10 μM ODQ also
significantly reduced the response to IR light, particularly in the
proximal endothelium-intact segments.

As shown in Figure 4, there was a distinct difference in the
responses of the occipital artery segments during the 5-s exposure to
IR. The endothelium-intact proximal segments responded
substantially more than the distal segments (Figure 4A). In
contrast, the vascular tone of both segments was virtually
unchanged during IR exposure when the endothelium was
removed (Figure 4B). The addition of 10 μM ODQ significantly
reduced the response to IR, but only in the proximal segments
(Figures 4C, D). In both segments, ODQ was not as effective as
denudation at blocking the IR response during exposure to IR. In
addition, there was a vasodilator response that was initiated once the
IR was turned off. This effect is demonstrated in Figure 5, where the
responses during the 5 s of IR exposure were subtracted, and what is
displayed represents the responses only after the IR was turned off.

FIGURE 3
Responses to 5-s IR light exposure of intact and endothelium-denuded proximal and distal occipital artery segments with and without 10 μMODQ.
The data are presented as mean ± SEM of the responses expressed as a percentage of agonist-induced constriction (% 5-HT pre-tone). N = 12 for intact
arteries, N = 7 for endothelium-denuded, and N = 6 ODQ. Data are compared via repeated measures two-way ANOVA with the Geisser-Greenhouse
correction. (A, B): *p < 0.05 between Distal and Proximal at each timepoint via Šídák’s multiple comparisons test. (C, D): *p < 0.05 between Denuded
and Intact, †p < 0.05 between ODQ and Intact, and ‡p < 0.05 between ODQ and Denuded.
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The response was greater in the intact proximal versus distal arteries
(Figure 5A). The responses of both denuded segments were again
indistinguishable (Figure 5B). Furthermore, While 10 μM ODQ did
diminish the response in the proximal OA similar to that of
denudation (Figure 5C), the effect was far more pronounced in
the distal segments (Figure 5D).

3.2 K+- and agonist-induced vasoreactivity
of occipital artery segments before and
after IR

To determine the effects of IR on vasoreactivity beyond the
actual vasodilator response shown above, HiKs were performed after
the IR exposures and after the 5-HT had been washed from the bath.
The segments were allowed at least 20 min to return to baseline
(Figure 6). Increases in tension from the third HiK depolarization
conducted during the setup procedure (left panel) and after the IR
experiment (middle panel) are compared and shown as a percent
change (right panel). The intact and denuded proximal occipital
arteries displayed a 32% and 17% decrease in HiK response,

respectively. The intact and denuded distal HiK response
decreased by 20% and 11%, respectively. To evaluate any effect
of IR on agonist-induced vasoconstriction, a concentration-response
to 5-HT was determined before and after the application of IR in a
separate group of occipital artery segments (Figure 7). Unlike the
changes in the HiK responses, there was no substantial difference in
the responses to 5-HT observed before and after IR. Similarly, and
perhaps most importantly, no difference was observed in the
magnitude of the endothelium-dependent vasodilation elicited by
ACh before and after IR in the intact occipital artery segments
(Figure 8).

4 Discussion

The present study demonstrates that a brief (5 s) application of
light in the infrared spectrum (1,460 nm) elicits a rapid and
sustained vasodilator response in isolated rat occipital arteries.
The key findings were that 1) IR elicited a far greater
vasorelaxant response in the proximal occipital artery segment
(closer to the ECA) than the distal occipital artery segments

FIGURE 4
Responses during 5-s IR light exposure in intact and endothelium-denuded proximal and distal occipital artery segments with 10 μMODQ. The data
are presented as mean ± SEM of the responses expressed as a percentage of agonist-induced constriction (% 5-HT pre-tone). N = 12 for intact arteries,
N = 7 for endothelium-denuded, and N = 6 ODQ. Data are compared via repeated measures two-way ANOVA with the Geisser-Greenhouse correction.
(A, B): *p < 0.05 between Distal and Proximal (C, D): *p < 0.05 between Denuded and Intact, †p < 0.05 between ODQ and Intact, and ‡p <
0.05 between ODQ and Denuded.
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FIGURE 5
Changes in tension immediately after 5-s IR light exposure of intact and endothelium-denuded proximal and distal occipital artery segments with
10 μMODQ. The responses during 5-s IR light exposure have been subtracted, and all values at the moment the IR light was turned off are set as 0. The
data are presented as mean ± SEM of the responses expressed as a percentage of agonist-induced constriction (% 5-HT pre-tone). N = 12 for intact
arteries, N = 7 for endothelium-denuded, and N = 6 ODQ. Data are compared via repeated measures two-way ANOVA with the Geisser-
Greenhouse correction. (A, B): *p < 0.05 between Distal and Proximal (C, D): *p < 0.05 between Denuded and Intact, †p < 0.05 between ODQ and Intact,
and ‡p < 0.05 between ODQ and Denuded.

FIGURE 6
The effects of IR exposure on the response to the changes in tension (mN) elicited by the addition of 80 mM K + PSS (HiK) in proximal and distal
intact, and endothelium-denuded OA segments. HiKs were conducted before (A) and after (B) exposure to 5 s of IR light. Percent changes in the
responses are shown in the (C). The data are presented as mean ± SEM. N = 12 for intact arteries, N = 7 for endothelium-denuded. *p < 0.05 indicates a
significant difference between proximal and distal, †p < 0.05 between intact and denuded.
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(closer to the nodose ganglion), 2) IR-induced vasorelaxations were
largely dependent on the presence of intact endothelium, 3) the
vasorelaxations were markedly diminished in the presence of the

soluble cyclase inhibitor, ODQ, and 4) the vasorelaxations were
sustained well after cessation of the IR exposure. Our previous study
comparing the reactivity of proximal and distal occipital artery

FIGURE 7
Responses to cumulative addition of 5-hydroxytryptamine (5-HT, 0.001–10 μM) before (pre) and after (post) 5-s IR light exposure of intact and
endothelium-denuded proximal and distal occipital artery segments. The data are presented asmean ± SEM as a percentage of the response to 80 mMK+

(HiK). N = 6 for all. *p < 0.05 indicates a significant difference between pre and post.

FIGURE 8
Responses to cumulative addition of acetylcholine (ACh, 0.001–10 μM) before (pre) and after (post) 5-s IR light exposure of intact and proximal and
distal occipital artery segments. The data are presented as mean ± SEM as a percentage of the response to 80 mM K+ (HiK). N = 4 for “pre” and N = 6 for
“post” groups. *p < 0.05 indicates a significant difference between pre and post.
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segments showed that endothelium-dependent vasodilators
generate greater relaxant responses in the proximal occipital
artery segment than in the distal segment whereas the relaxant
responses elicited by the nitric oxide donor, MAHMA NONOate,
were similar in both segments (Lewis et al., 2021). As such, it is
tempting to assume that the greater vasorelaxant effect of IR on
proximal arteries is due to unique properties (e.g., structural
proteins, signaling pathways, subcellular organelles) not shared
by the distal arteries.

The endothelium is a responsive and heterogenous network of
functional cells (Chistiakov et al., 2017). The segmental differences
in endothelial function between the proximal and distal segments
most likely result from physiological necessity related to the position
of the proximal segment to the common carotid artery. Factors
driving the heterogeneity of endothelial cells include shear stresses
induced by laminar versus turbulent flow over the surface of the cells
via mechanosensitive signaling pathways (Chistiakov et al., 2017).
Shear stress induces differentiation of endothelial cells (Wang et al.,
2005), impacts the morphology of the cells including expression of
organelles (Potter et al., 2011), and counteracts dysfunction of
endothelial cells caused by static blood flow conditions (Lee
et al., 2017). The emergence of the occipital at a near-right angle
from the external carotid artery raises the likelihood of turbulent
blood flow in the segment proximal to the external carotid artery
(see Figure 1 of Lewis et al., 2021) that becomes increasingly laminar
as blood cells enter the more distal segments. This difference in
laminar/non-laminar flow over the length of the occipital artery
could significantly impact the phenotype, and therefore the function
of the vascular endothelium. It is also possible that the unique
functionality of the proximal segment may involve the processes that
allow this segment to establish a critical closing pressure, the arterial
blood pressure below which arteries are closed or conversely the
arterial blood pressure that elicits opening of a closed artery (López-
Magaña et al., 2009; Moraes et al., 2021; Liang et al., 2022), whereas
the distal segment close to the nodose ganglion has no such role
to play.

IR light is readily absorbed by water, converting to thermal
energy and therefore the effects of IR light on vasodilation could be
regulated by a heat-sensitive mechanism. Absorption of IR light by
water molecules produces a rapid thermal transient increase that can
depolarize target cells (Shapiro et al., 2012), and cause direct neural
activation (Wells et al., 2007), but changes in current across
membranes are driven by the rate of change of temperature (dT/
dt heat shock), not overall changes in temperature (Liu et al., 2014),
suggesting that the brief targeted IR light application in this study
could be sufficient to elicit the responses we report. Potential targets
of this thermal energy are thermosensitive ion channels such as
transient receptor potential (TRP) channels, which are known to
play important roles in both endothelium-dependent vasodilation
and in the vascular smooth muscle cells themselves (see Earley and
Brayden, 2015 for review). While there is evidence that activation of
TRP channels elicits in the endothelium elicits vasodilation, these
mechanisms appear to mostly be independent of NO (Zhang and
Gutterman, 2011), which does not fully explain our data given the
great reduction in response in the presence of ODQ. We have
provided evidence that hyperthermia modulates vascular reactivity
and baroreflex function in conscious rats (Massett et al., 2000) and
that the hemodynamic adjustments to heat stress in the rat involve

the release of neurogenic/endothelial nitrosyl factors (Kregel et al.,
1997). We have also provided in vitro evidence that raising the
temperature of bath solutions to hyperthermic levels alters resting
vascular tone and responsiveness to vasodilator and vasoconstrictor
compounds (Massett et al., 1998a; Massett et al. 1998b; Massett et al.,
1999). The role of heat-sensitive mechanisms may at least explain
the consistent ≈20% vasodilation that occurred regardless of the
segment, and in the absence of the endothelium or presence of ODQ.

There remains the possibility that IR light at this wavelength has
endothelial-specific effects, independent of the ability to generate
heat. Coupling the observations that IR-induced relaxations were
largely endothelium-dependent and blocked by ODQ certainly
suggests that the primary mechanism of action underlying IR-
induced relaxation of the occipital artery segments involves the
actions of nitric oxide/S-nitrosothiols that elicit their effects via the
activation of soluble guanylate cyclase and the generation of cGMP.
Red/near IR light is reported to stimulate Ca2+ influx and Ca2+

release from the endoplasmic reticulum (Golovynska et al., 2020)
degradation of preformed endothelial pools of S-nitrosothiols to
nitric oxide (Keszler et al., 2017; Keszler et al., 2018; Keszler et al.,
2019; Weihrauch et al., 2021; Keszler et al., 2022), and release of
S-nitrosothiol-containing vesicles into the interstitial space (Riego
et al., 2009). However, light in this wavelength has very low
absorbance by water, meaning heat is not a likely mechanism. It
is plausible that IR elicits endothelium-dependent vasodilation via 1)
degradation of preformed S-nitrosothiols to nitric oxide which
relaxes adjacent vascular smooth muscle via soluble-guanylate
cyclase/cGMP-dependent mechanisms, and/or 2) release of
preformed vesicular pools of S-nitrosothiols (Keszler et al., 2017;
Keszler et al., 2018; Keszler et al., 2019; Keszler et al., 2022) or
vesicle-containing S-nitrosothiols into the interstitial space between
endothelial cells and muscle (Weihrauch et al., 2021) that are also
able to directly activate soluble guanylate cyclase (Riego et al., 2009;
Tsai and Hamblin, 2017). As depicted in Figure 9, suggests two
potential mechanisms by which IR elicits vasodilation. As seen in
panel A, IR may directly degrade preformed S-nitrosothiols to nitric
oxide (NO) which diffuses across the membrane and relaxes
adjacent vascular smooth muscle via soluble-guanylate cyclase
(sGC)/cGMP-dependent mechanisms. As seen in panel B, IR
may stimulate vesicles to fuse with the endothelial membrane
and release S-nitrosothiols into the interstitial space between
endothelial cells and muscle. L-amino acid transporters (L-AT)
on the muscle cells then transport S-nitrosothiols that are also
able to directly activate sGC to cause vasodilation. No matter
what the mechanism, the longevity of the vasodilator response
following termination of the short burst of IR is a surprising but
welcome phenomenon in the context of developing a therapeutic
strategy to improve vascular blood flow. Potential mechanisms
could involve the burst of IR eliciting increases in intracellular
mediators (e.g., Ca2+, cGMP, cAMP) and/or changes in
phosphorylation/nitrosation status of functional proteins within
endothelial cells (including mitochondria) that only slowly wane
over time.

There are several limitations of our study, including the use of
isolated blood vessels in a bath which removes the possible
concomitant impact of IR on blood cells and surrounding tissues
including active sympathetic nerve terminals which innervate blood
vessels, including the cerebral (Nielsen and Owman, 1967) and
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peripheral (Aalkjær et al., 2021) vasculature. Although we could not
detect temperature changes in the bath solution during/after bursts
of IR, this does not preclude that IR increased the temperature of the
occipital artery segments locally. Whether such an increase in
temperature contributed to the greater endothelium-
responsiveness of the proximal occipital artery segments remains
to be established but the possibility that the expression of thermal-
or light-sensitive proteins and/or pre-formed pools of
S-nitrosothiols is higher in the proximal segments is currently
under study. Also, in this study, we only report the effects of one
energy. Each individual artery only received one application of IR
light. There may be cumulative effects of multiple IR exposures, and
therefore we did not demonstrate a range of energy effects. Other
energies, or repeated IR exposures, would be important to
investigate in the future.

The results of the present study may impact the interpretation of
findings related to the effects and therapeutic benefits of infrared
neuromodulation on intact tissues. It would be expected that an
increase in blood flowwithin tissues would have a positive impact on
tissue health. For example, IR modulation of neuronal function has
the possibility of overcoming many of the issues that exist with more
traditional electrical stimulation approaches such as the requirement
for direct contact, lack of spatial resolution, and stimulation artifacts
(Richter et al., 2011). Physiological responses elicited by brief pulses
of IR light have been demonstrated in a variety of tissues, including

the peripheral and central nervous systems (Chernov and Roe,
2014), and can both excite (Wells et al., 2005) and inhibit (Duke
et al., 2013) neural activity. While stimulation of the vagus nerve
using traditional electrical techniques has shown effects on
conditions like hypertension (Plachta et al., 2014) and
inflammation (Borovikova et al., 2000) among others, optical
techniques offer more refined control of stimulation such as the
ability to selectively inhibit small-diameter axons (Lothet et al.,
2017) and thus provide more targeted modulation of specific
physiological functions. Indeed, IR selectively depolarizes dorsal
root ganglion and nodose ganglion neurons (Katz et al., 2010). As
the nodose ganglion contains the majority of the cell bodies of vagal
afferent neurons emanating from peripheral organs and structures
(see Lewis et al., 1990; Lacolley et al., 2006b; Lacolley et al., 2006)
application of IR to the cell bodies of autonomic and sensory nerves
would be a unique manner to control visceral function including
blood pressure, breathing, swallowing, airway resistance and pain
perception. The results of the present study suggest that potential
concomitant changes in blood flow in the above structures should be
taken into consideration when interpreting the effects of IR and the
therapeutic potential of IR protocols.

In conclusion, the present study suggests that IR generates rapid
vasodilation in isolated occipital artery segments by mechanisms that
may involve the release of nitric oxide from the endothelium that relaxes
vascular smooth muscle by sGC-dependent processes. The use of light,

FIGURE 9
Representative diagram of two potential mechanisms by which infrared light (IR) elicits vasodilation. In (A), IR directly degrades preformed
S-nitrosothiols to nitric oxide (NO) which diffuses across the membrane and relaxes adjacent vascular smooth muscle via soluble-guanylate cyclase
(sGC)/cGMP-dependent mechanisms. In (B), IR may stimulate vesicles to fuse with the endothelial membrane and release S-nitrosothiols into the
interstitial space between endothelial cells and muscle. L-amino acid transporters (L-AT) on the muscle cells then transport S-nitrosothiols that are
also able to directly activate sGC resulting in vasodilation.
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and in particular, red light, has been explored formany clinical uses (see
Tsai and Hamblin, 2017), including wound healing (Desmet et al.,
2006), neuroprotective (Zhu et al., 2021), and tissue and bone
regeneration (Wan et al., 2020). While the vasodilatory effects of red
and near-IR takeminutes to reach full effect (Keszler et al., 2017; Keszler
et al., 2018; Keszler et al., 2019; Weihrauch et al., 2021; Keszler et al.,
2022), we now demonstrate that direct application of IR elicits potent
vasorelaxant effects in seconds that are maintained well beyond the
period of IR exposure and that vessels maintain normal response to
pharmacological stimuli after IR exposure. The application of IR may
provide a new therapeutic option for increasing blood flow to targeted
tissues in disease states such as hypertension and diabetes.
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