34,235 research outputs found

    A simplified model of the Martian atmosphere - Part 1: a diagnostic analysis

    Get PDF
    In this paper we derive a reduced-order approximation to the vertical and horizontal structure of a simplified model of the baroclinically unstable Martian atmosphere. The original model uses the full hydrostatic primitive equations on a sphere, but has only highly simplified schemes to represent the detailed physics of the Martian atmosphere, e.g. forcing towards a plausible zonal mean temperature state using Newtonian cooling. Three different norms are used to monitor energy conversion processes in the model and are then compared. When four vertical modes (the barotropic and first three baroclinic modes) are retained in the reduced-order approximation, the correlation norm captures approximately 90% of the variance, while the kinetic energy and total energy norms capture approximately 83% and 78% of the kinetic and total energy respectively. We show that the leading order Proper Orthogonal Decomposition (POD) modes represent the dominant travelling waves in the baroclinically-unstable, winter hemisphere. In part 2 of our study we will develop a hierarchy of truncated POD-Galerkin expansions of the model equations using up to four vertical modes

    Reduced-order models of the Martian atmospheric dynamics

    Get PDF
    In this paper we explore the possibility of deriving low-dimensional models of the dynamics of the Martian atmosphere. The analysis consists of a Proper Orthogonal Decomposition (POD) of the atmospheric streamfunction after first decomposing the vertical structure with a set of eigenmodes. The vertical modes were obtained from the quasi-geostrophic vertical structure equation. The empirical orthogonal functions (EOFs) were optimized to represent the atmospheric total energy. The total energy was used as the criterion to retain those modes with large energy content and discard the rest. The principal components (PCs) were analysed by means of Fourier analysis, so that the dominant frequencies could be identified. It was possible to observe the strong influence of the diurnal cycle and to identify the motion and vacillation of baroclinic waves

    A simplified model of the Martian atmosphere - Part 2: a POD-Galerkin analysis

    Get PDF
    In Part I of this study Whitehouse et al. (2005) performed a diagnostic analysis of a simplied model of the Martian atmosphere, in which topography was absent and in which heating was modelled as Newtonian relaxation towards a zonally symmetric equilibrium temperature field. There we derived a reduced-order approximation to the vertical and the horizonal structure of the baroclinically unstable Martian atmosphere, retaining only the barotropic mode and the leading order baroclinic modes. Our objectives in Part II of the study are to incorporate these approximations into a Proper Orthogonal Decomposition-Galerkin expansion of the spherical quasi-geostrophic model in order to derive hierarchies of nonlinear ordinary differential equations for the time-varying coefficients of the spatial structures. Two different vertical truncations are considered, as well as three different norms and 3 different Galerkin truncations. We investigate each in turn, using tools from bifurcation theory, to determine which of the systems most closely resembles the data for which the original diagnostics were performed

    Events leading up to the June 2015 outburst of V404 Cyg

    Full text link
    On 2015 June 15 the burst alert telescope (BAT) on board {\em Swift} detected an X-ray outburst from the black hole transient V404 Cyg. We monitored V404 Cyg for the last 10 years with the 2-m Faulkes Telescope North in three optical bands (V, R, and i^{'}). We found that, one week prior to this outburst, the optical flux was 0.1--0.3 mag brighter than the quiescent orbital modulation, implying an optical precursor to the X-ray outburst. There is also a hint of a gradual optical decay (years) followed by a rise lasting two months prior to the outburst. We fortuitously obtained an optical spectrum of V404 Cyg 13 hours before the BAT trigger. This too was brighter (1mag\sim1\rm\,mag) than quiescence, and showed spectral lines typical of an accretion disk, with characteristic absorption features of the donor being much weaker. No He II emission was detected, which would have been expected had the X-ray flux been substantially brightening. This, combined with the presence of intense Hα\alpha emission, about 7 times the quiescent level, suggests that the disk entered the hot, outburst state before the X-ray outburst began. We propose that the outburst is produced by a viscous-thermal instability triggered close to the inner edge of a truncated disk. An X-ray delay of a week is consistent with the time needed to refill the inner region and hence move the inner edge of the disk inwards, allowing matter to reach the central BH, finally turning on the X-ray emission.Comment: Accepted by ApJ Letter, 7 pages, 5 figure

    Spraying for prevention of apple blotch and apple scab

    Get PDF
    Cover title.Bibliography: p. 44-45.Mode of access: Internet

    Growth and form of the mound in Gale Crater, Mars: Slope wind enhanced erosion and transport

    Get PDF
    Ancient sediments provide archives of climate and habitability on Mars. Gale Crater, the landing site for the Mars Science Laboratory (MSL), hosts a 5-km-high sedimentary mound (Mount Sharp/Aeolis Mons). Hypotheses for mound formation include evaporitic, lacustrine, fluviodeltaic, and aeolian processes, but the origin and original extent of Gale’s mound is unknown. Here we show new measurements of sedimentary strata within the mound that indicate ∼3° outward dips oriented radially away from the mound center, inconsistent with the first three hypotheses. Moreover, although mounds are widely considered to be erosional remnants of a once crater-filling unit, we find that the Gale mound’s current form is close to its maximal extent. Instead we propose that the mound’s structure, stratigraphy, and current shape can be explained by growth in place near the center of the crater mediated by wind-topography feedbacks. Our model shows how sediment can initially accrete near the crater center far from crater-wall katabatic winds, until the increasing relief of the resulting mound generates mound-flank slope winds strong enough to erode the mound. The slope wind enhanced erosion and transport (SWEET) hypothesis indicates mound formation dominantly by aeolian deposition with limited organic carbon preservation potential, and a relatively limited role for lacustrine and fluvial activity. Morphodynamic feedbacks between wind and topography are widely applicable to a range of sedimentary and ice mounds across the Martian surface, and possibly other planets
    corecore