62,112 research outputs found
Chrysler improved numerical differencing analyzer for third generation computers CINDA-3G
New and versatile method has been developed to supplement or replace use of original CINDA thermal analyzer program in order to take advantage of improved systems software and machine speeds of third generation computers. CINDA-3G program options offer variety of methods for solution of thermal analog models presented in network format
Using statutory guidance and codes of practice to build on whistleblowing legislation: the Irish experience
In our opinion, the use of Guidance regarding whistleblower protection represents best international practice with regard to protected disclosures. It is devised on the premise that a one-size-fits-all approach is not appropriate given the different nature and scope of public sector bodies. In the authors’ opinion, the Irish experience demonstrates how statutory guidance and Codes of Practice can be valuable methods of explaining how the law is intended to operate as well as encouraging best practice which goes beyond the minimum statutory floor of rights
Recommended from our members
Midwinter suppression of baroclinic storm activity on Mars: observations and models
We present results from assimilated analyses of observations from the Mars Global Surveyor Thermal Emission Spectrometer showing evidence for a regular suppression of baroclinic circumpolar storm activity in both hemispheres of Mars around winter solstice. General circulation model simulations are then used to elucidate the structure and possible causes of this suppression, for which the local ‘Eady growth rate’ appears to be a good predictor
Man-machine interface and control of the shuttle digital flight system
The space shuttle main engine (SSME) presented new requirements in the design of controls for large pump fed liquid rocket engine systems. These requirements were the need for built in full mission support capability, and complexity and flexibility of function not previously needed in this type of application. An engine mounted programmable digital control system was developed to meet these requirements. The engine system and controller and their function are described. Design challenges encountered during the course of development included accommodation for a very severe engine environment, the implementation of redundancy and redundancy management to provide fail operational/fail safe capability, removal of heat from the package, and significant constraints on computer memory size and processing time. The flexibility offered by programmable control reshaped the approach to engine design and development and set the pattern for future controls development in these types of applications
Ion-ion dynamic structure factor, acoustic modes and equation of state of two-temperature warm dense aluminum
The ion-ion dynamical structure factor and the equation of state of warm
dense aluminum in a two-temperature quasi-equilibrium state, with the electron
temperature higher than the ion temperature, are investigated using
molecular-dynamics simulations based on ion-ion pair potentials constructed
from a neutral pseudoatom model. Such pair potentials based on density
functional theory are parameter-free and depend directly on the electron
temperature and indirectly on the ion temperature, enabling efficient
computation of two-temperature properties. Comparison with ab initio
simulations and with other average-atom calculations for equilibrium aluminum
shows good agreement, justifying a study of quasi-equilibrium situations.
Analyzing the van Hove function, we find that ion-ion correlations vanish in a
time significantly smaller than the electron-ion relaxation time so that
dynamical properties have a physical meaning for the quasi-equilibrium state. A
significant increase in the speed of sound is predicted from the modification
of the dispersion relation of the ion acoustic mode as the electron temperature
is increased. The two-temperature equation of state including the free energy,
internal energy and pressure is also presented
Recommended from our members
Dust-related interannual and intraseasonal variability of Martian climate using data assimilation
Data assimilation has been applied in several studies [Montabone et al., 2005; Lewis et al., 2005; Montabone et al., 2006a; Montabone et al., 2006b; Lewis et al., 2007; Wilson et al., 2008; Rogberg et al. 2010] as an effective tool with which to analyze spacecraft observations and phenomena (e.g., atmospheric tides, transient wave behavior, effects of clouds in the tropics, weather predictability, etc.) in the Martian atmosphere. A data assimilation scheme combined with a Martian Global Circulation Model (GCM) is able to provide a complete, balanced, four-dimensional solution consistent with observations.
The GCM we use [Forget et al., 1999] combines a spectral dynamical solver and a tracer transport scheme developed in UK and Laboratoire de Météorologie Dynamique (LMD; Paris, France) physics package developed in collaboration with Oxford, The Open University and Instituto de Astrofisica de Andalucia (Granada, Spain).
Here, we describe and discuss dust-related interannual and intraseasonal variability of the Martian climate. The results shown in this study come from a reanalysis using the Martian GCM with data assimilation scheme which assimilates Mars Global Surveyor/ Thermal Emission Spectrometer (MGS/TES) retrievals of temperature and column dust opacity. The detailed model setup was described by Montabone et al. [2006a], and the data assimilation scheme employed in this study was introduced in the work of Lewis et al. [2007]
Isochoric, isobaric and ultrafast conductivities of aluminum, lithium and carbon in the warm dense matter (WDM) regime
We study the conductivities of (i) the equilibrium isochoric state
(), (ii) the equilibrium isobaric state (),
and also the (iii) non-equilibrium ultrafast matter (UFM) state () with the ion temperature less than the the electron temperature
. Aluminum, lithium and carbon are considered, being increasingly complex
warm dense matter (WDM) systems, with carbon having transient covalent bonds.
First-principles calculations, i.e., neutral-pseudoatom (NPA) calculations and
density-functional theory (DFT) with molecular-dynamics (MD) simulations, are
compared where possible with experimental data to characterize and . The NPA are
closest to the available experimental data when compared to results from
DFT+MD, where simulations of about 64-125 atoms are typically used. The
published conductivities for Li are reviewed and the value at a temperature of
4.5 eV is examined using supporting X-ray Thomson scattering calculations. A
physical picture of the variations of with temperature and density
applicable to these materials is given. The insensitivity of to
below 10 eV for carbon, compared to Al and Li, is clarified.Comment: 10 figure
- …