1,507 research outputs found
The natural history of bugs: using formal methods to analyse software related failures in space missions
Space missions force engineers to make complex trade-offs between many different constraints including cost, mass, power, functionality and reliability. These constraints create a continual need to innovate. Many advances rely upon software, for instance to control and monitor the next generation ‘electron cyclotron resonance’ ion-drives for deep space missions.Programmers face numerous challenges. It is extremely difficult to conduct valid ground-based tests for the code used in space missions. Abstract models and simulations of satellites can be misleading. These issues are compounded by the use of ‘band-aid’ software to fix design mistakes and compromises in other aspects of space systems engineering. Programmers must often re-code missions in flight. This introduces considerable risks. It should, therefore, not be a surprise that so many space missions fail to achieve their objectives. The costs of failure are considerable. Small launch vehicles, such as the U.S. Pegasus system, cost around 4 million up to 73 million from the failure of a single uninsured satellite. It is clearly important that we learn as much as possible from those failures that do occur. The following pages examine the roles that formal methods might play in the analysis of software failures in space missions
Mid-Miocene cooling and the extinction of tundra in continental Antarctica
A major obstacle in understanding the evolution of Cenozoic climate has been the lack of well dated terrestrial evidence from high-latitude, glaciated regions. Here, we report the discovery of exceptionally well preserved fossils of lacustrine and terrestrial organisms from the McMurdo Dry Valleys sector of the Transantarctic Mountains for which we have established a precise radiometric chronology. The fossils, which include diatoms, palynomorphs, mosses, ostracodes, and insects, represent the last vestige of a tundra community that inhabited the mountains before stepped cooling that first brought a full polar climate to Antarctica. Paleoecological analyses, 40Ar/39Ar analyses of associated ash fall, and climate inferences from glaciological modeling together suggest that mean summer temperatures in the region cooled by at least 8°C between 14.07 ± 0.05 Ma and 13.85 ± 0.03 Ma. These results provide novel constraints for the timing and amplitude of middle-Miocene cooling in Antarctica and reveal the ecological legacy of this global climate transition
Recommended from our members
Aluminium distribution in ZSM-5 revisited: the role of Al-Al interactions
We present a theoretical study of the distribution of Al atoms in zeolite ZSM-5 with Si/Al=47, where we focus on the role of Al-Al interactions rather than on the energetics of Al/Si substitutions at individual sites. Using interatomic potential methods, we evaluate the energies of the full set of symmetrically independent configurations of Al siting in a Si94Al2O192 cell. The equilibrium Al distribution is determined by the interplay of two factors: the energetics of the Al/Si substitution at an individual site, which tends to populate particular T sites (e.g. the T14 site), and the Al-Al interaction, which at this Si/Al maximises Al-Al distances in agreement with Dempsey’s rule. However, it is found that the interaction energy changes approximately as the inverse of the square of the distance between the two Al atoms, rather than the inverse of the distance expected if this were merely charge repulsion. Moreover, we find that the anisotropic nature of the framework density plays an important role in determining the magnitude of the interactions, which are not simply dependent on Al-Al distances
Synthesis and characterization of Na03RhO206H2O - a semiconductor with a weak ferromagnetic component
We have prepared the oxyhydrate Na03RhO206H2O by extracting Na+ cations from
NaRhO2 and intercalating water molecules using an aqueous solution of Na2S2O8.
Synchrotron X-ray powder diffraction, thermogravimetric analysis (TGA), and
energy-dispersive x-ray analysis (EDX) reveal that a non-stoichiometric
Na03(H2O)06 network separates layers of edge-sharing RhO6 octahedra containing
Rh3+(4d6, S=0) and Rh4+ (4d5, S=1/2). The resistivities of NaRhO2 and
Na03RhO206H2O (T < 300) reveal insulating and semi-conducting behavior with
activation gaps of 134 meV and 7.8 meV, respectively. Both Na03RhO206H2O and
NaRhO2 show paramagnetism at room temperature, however, the sodium-deficient
sample exhibits simultaneously a weak but experimentally reproducible
ferromagnetic component. Both samples exhibit a temperature-independent Pauli
paramagnetism, for NaRhO2 at T > 50 K and for Na03RhO206H2O at T > 25 K. The
relative magnitudes of the temperature-independent magnetic susceptibilities,
that of the oxide sample being half that of the oxyhydrate, is consistent with
a higher density of thermally accessible electron states at the Fermi level in
the hydrated sample. At low temperatures the magnetic moments rise sharply,
providing evidence of localized and weakl -ordered electronic spins.Comment: 15 fages 5 figures Solid State Communications in prin
Constraining slow-roll inflation with WMAP and 2dF
We constrain slow-roll inflationary models using the recent WMAP data
combined with data from the VSA, CBI, ACBAR and 2dF experiments. We find the
slow-roll parameters to be and . For inflation models
we find that at the 2 and levels,
indicating that the model is under very strong pressure from
observations. We define a convergence criterion to judge the necessity of
introducing further power spectrum parameters such as the spectral index and
running of the spectral index. This criterion is typically violated by models
with large negative running that fit the data, indicating that the running
cannot be reliably measured with present data.Comment: 8 pages RevTeX4 file with six figures incorporate
Non-Gaussian isocurvature perturbations in dark radiation
We study non-Gaussian properties of the isocurvature perturbations in the
dark radiation, which consists of the active neutrinos and extra light species,
if exist. We first derive expressions for the bispectra of primordial
perturbations which are mixtures of curvature and dark radiation isocurvature
perturbations. We also discuss CMB bispectra produced in our model and forecast
CMB constraints on the nonlinearity parameters based on the Fisher matrix
analysis. Some concrete particle physics motivated models are presented in
which large isocurvature perturbations in extra light species and/or the
neutrino density isocurvature perturbations as well as their non-Gaussianities
may be generated. Thus detections of non-Gaussianity in the dark radiation
isocurvature perturbation will give us an opportunity to identify the origin of
extra light species and lepton asymmetry.Comment: 32 pages, 7 figure
SAT-Based Synthesis Methods for Safety Specs
Automatic synthesis of hardware components from declarative specifications is
an ambitious endeavor in computer aided design. Existing synthesis algorithms
are often implemented with Binary Decision Diagrams (BDDs), inheriting their
scalability limitations. Instead of BDDs, we propose several new methods to
synthesize finite-state systems from safety specifications using decision
procedures for the satisfiability of quantified and unquantified Boolean
formulas (SAT-, QBF- and EPR-solvers). The presented approaches are based on
computational learning, templates, or reduction to first-order logic. We also
present an efficient parallelization, and optimizations to utilize reachability
information and incremental solving. Finally, we compare all methods in an
extensive case study. Our new methods outperform BDDs and other existing work
on some classes of benchmarks, and our parallelization achieves a super-linear
speedup. This is an extended version of [5], featuring an additional appendix.Comment: Extended version of a paper at VMCAI'1
Nonlinear Realization of Chiral Symmetry on the Lattice
We formulate lattice theories in which chiral symmetry is realized
nonlinearly on the fermion fields. In this framework the fermion mass term does
not break chiral symmetry. This property allows us to use the Wilson term to
remove the doubler fermions while maintaining exact chiral symmetry on the
lattice. Our lattice formulation enables us to address non-perturbative
questions in effective field theories of baryons interacting with pions and in
models involving constituent quarks interacting with pions and gluons. We show
that a system containing a non-zero density of static baryons interacting with
pions can be studied on the lattice without encountering complex action
problems. In our formulation one can also decide non-perturbatively if the
chiral quark model of Georgi and Manohar provides an appropriate low-energy
description of QCD. If so, one could understand why the non-relativistic quark
model works.Comment: 34 pages, 2 figures, revised version to be published in J. High
Energy Phys. (changes in the 1st paragraph, additional descriptions on the
nature of the coordinate singularities in Sec.2, references added
Estimating the tensor-to-scalar ratio and the effect of residual foreground contamination
We consider future balloon-borne and ground-based suborbital experiments
designed to search for inflationary gravitational waves, and investigate the
impact of residual foregrounds that remain in the estimated cosmic microwave
background maps. This is achieved by propagating foreground modelling
uncertainties from the component separation, under the assumption of a
spatially uniform foreground frequency scaling, through to the power spectrum
estimates, and up to measurement of the tensor to scalar ratio in the parameter
estimation step. We characterize the error covariance due to subtracted
foregrounds, and find it to be subdominant compared to instrumental noise and
sample variance in our simulated data analysis. We model the unsubtracted
residual foreground contribution using a two-parameter power law and show that
marginalization over these foreground parameters is effective in accounting for
a bias due to excess foreground power at low . We conclude that, at least
in the suborbital experimental setups we have simulated, foreground errors may
be modeled and propagated up to parameter estimation with only a slight
degradation of the target sensitivity of these experiments derived neglecting
the presence of the foregrounds.Comment: 19 pages, 12 figures, accepted for publication in JCA
Braneworld Tensor Anisotropies in the CMB
Cosmic microwave background (CMB) observations provide in principle a
high-precision test of models which are motivated by M theory. We set out the
framework of a program to compute the tensor anisotropies in the CMB that are
generated in braneworld models. In the simplest approximation, we show the
braneworld imprint as a correction to the power spectra for standard
temperature and polarization anisotropies.Comment: Minor corrections and references added. Accepted for publication in
Phys. Rev.
- …
