43,942 research outputs found
Comparison of a grid-based CFD method and vortex dynamics predictions of low Reynolds number cylinder flow
Computational fluid dynamics models range from the finite
difference type grid-based method to the Lagrangian style vortex
cloud simulation technique for solving the Navier-Stokes equations. This paper undertakes a comparison of these two methods for the classical datum bluff body case of flow past a stationary circular cylinder at low Reynolds numbers in the range 10 to 220. Comparisons include time-history, time-mean and root-mean-square
values of oscillating drag and lift coefficients, frequency of vortex shedding and related vortex street wake flow patterns. Particularly close agreement was obtained for Strouhal number versus Reynolds number, and good agreement for time-mean value of drag coefficients; comparison was also made with experimental results. Attempts are also made to calculate the skin friction and surface pressure components of the cylinder drag, revealing the significance of skin friction drag within this range and its relative insignificance above a Reynolds number of 220
Lensed CMB power spectra from all-sky correlation functions
Weak lensing of the CMB changes the unlensed temperature anisotropy and
polarization power spectra. Accounting for the lensing effect will be crucial
to obtain accurate parameter constraints from sensitive CMB observations.
Methods for computing the lensed power spectra using a low-order perturbative
expansion are not good enough for percent-level accuracy. Non-perturbative
flat-sky methods are more accurate, but curvature effects change the spectra at
the 0.3-1% level. We describe a new, accurate and fast, full-sky
correlation-function method for computing the lensing effect on CMB power
spectra to better than 0.1% at l<2500 (within the approximation that the
lensing potential is linear and Gaussian). We also discuss the effect of
non-linear evolution of the gravitational potential on the lensed power
spectra. Our fast numerical code is publicly available.Comment: 16 pages, 4 figures. Changes to match PRD version including new
section on non-linear corrections. CAMB code available at http://camb.info
The 21cm angular-power spectrum from the dark ages
At redshifts z >~ 30 neutral hydrogen gas absorbs CMB radiation at the 21cm
spin-flip frequency. In principle this is observable and a high-precision probe
of cosmology. We calculate the linear-theory angular power spectrum of this
signal and cross-correlation between redshifts on scales much larger than the
line width. In addition to the well known redshift-distortion and density
perturbation sources a full linear analysis gives additional contributions to
the power spectrum. On small scales there is a percent-level linear effect due
to perturbations in the 21cm optical depth, and perturbed recombination
modifies the gas temperature perturbation evolution (and hence spin temperature
and 21cm power spectrum). On large scales there are several post-Newtonian and
velocity effects; although negligible on small scales, these additional terms
can be significant at l <~ 100 and can be non-zero even when there is no
background signal. We also discuss the linear effect of reionization
re-scattering, which damps the entire spectrum and gives a very small
polarization signal on large scales. On small scales we also model the
significant non-linear effects of evolution and gravitational lensing. We
include full results for numerical calculation and also various approximate
analytic results for the power spectrum and evolution of small scale
perturbations.Comment: 29 pages; significant extensions including: self-absorption terms
(i.e. change to background radiation due to 21cm absorption); ionization
fraction perturbations; estimates of non-linear effects; approximate analytic
results; results for sharp redshift window functions. Code available at
http://camb.info/sources
Reduced-order models of the Martian atmospheric dynamics
In this paper we explore the possibility of deriving low-dimensional models of the dynamics of the Martian atmosphere. The analysis consists of a Proper Orthogonal Decomposition (POD) of the atmospheric streamfunction after first decomposing the vertical structure with a set of eigenmodes. The vertical modes were obtained from the quasi-geostrophic vertical structure equation. The empirical orthogonal functions (EOFs) were optimized to represent the atmospheric total energy. The total energy was used as the criterion to retain those modes with large energy content and discard the rest. The principal components (PCs) were analysed by means of Fourier analysis, so that the dominant frequencies could be identified. It was possible to observe the strong influence of the diurnal cycle and to identify the motion and vacillation of baroclinic waves
Electron-impact excitation of X 1Sigma<sub>g</sub><sup>+</sup>(v[double-prime]=0) to the a[double-prime] 1Sigma<sub>g</sub><sup>+</sup>, b 1Piu, c3 1Piu, o3 1Piu, b[prime] 1Sigma<sub>u</sub><sup>+</sup>, c<sub>4</sub><sup>[prime]</sup> 1Sigma<sub>u</sub><sup>+</sup>, G 3Piu, and F 3Piu states of molecular nitrogen
Measurements of differential cross sections (DCSs) for electron-impact excitation of the a[double-prime] 1Sigmag+, b 1Piu, c3 1Piu, o3 1Piu, b[prime] 1Sigmau+, c4[prime] 1Sigmau+, G 3Piu, and F 3Piu states in N2 from the X 1Sigmag+(v[double-prime]=0) ground level are presented. The DCSs were obtained from energy-loss spectra in the region of 12 to 13.82 eV measured at incident energies of 17.5, 20, 30, 50, and 100 eV and for scattering angles ranging from 2° to 130°. The analysis of the spectra follows a different algorithm from that employed in a previous study of N2 for the valence states [Khakoo et al. Phys. Rev. A 71, 062703 (2005)], since the 1Piu and 1Sigmau+ states form strongly interacting Rydberg-valence series. The results are compared with existing data
Photometric Monitoring of the Gravitationally Lensed Ultraluminous BAL Quasar APM08279+5255
We report on one year of photometric monitoring of the ultraluminous BAL
quasar APM 08279+5255. The temporal sampling reveals that this gravitationally
lensed system has brightened by ~0.2 mag in 100 days. Two potential causes
present themselves; either the variability is intrinsic to the quasar, or it is
the result of microlensing by stars in a foreground system. The data is
consistent with both hypotheses and further monitoring is required before
either case can be conclusively confirmed. We demonstrate, however, that
gravitational microlensing can not play a dominant role in explaining the
phenomenal properties exhibited by APM 08279+5255. The identification of
intrinsic variability, coupled with the simple gravitational lensing
configuration, would suggest that APM 08279+5255 is a potential golden lens
from which the cosmological parameters can be derived and is worthy of a
monitoring program at high spatial resolution.Comment: 17 pages, with 2 figures. Accepted for publication in P.A.S.
Noether's Theorem and time-dependent quantum invariants
The time dependent-integrals of motion, linear in position and momentum
operators, of a quantum system are extracted from Noether's theorem
prescription by means of special time-dependent variations of coordinates. For
the stationary case of the generalized two-dimensional harmonic oscillator, the
time-independent integrals of motion are shown to correspond to special
Bragg-type symmetry properties. A detailed study for the non-stationary case of
this quantum system is presented. The linear integrals of motion are
constructed explicitly for the case of varying mass and coupling strength. They
are obtained also from Noether's theorem. The general treatment for a
multi-dimensional quadratic system is indicated, and it is shown that the
time-dependent variations that give rise to the linear invariants, as conserved
quantities, satisfy the corresponding classical homogeneous equations of motion
for the coordinates.Comment: Plain TeX, 23 pages, preprint of Instituto de Ciencias Nucleares,
UNAM Departamento de F\ii sica and Matem\'aticas Aplicadas, No. 01 (1994
Crystallization of the regulatory and effector domains of the key sporulation response regulator Spo0A
The key response-regulator gene of sporulation, spo0A, has been cloned from Bacillus stearothermophilus and the encoded protein purified. The DNA-binding and phospho-acceptor domains of Spo0A have been prepared by tryptic digestion of the intact protein and subsequently crystallized in forms suitable for X-ray crystallographic studies. The DNA-binding domain has been crystallized in two forms, one of which diffracts X-rays to beyond 2.5 Angstrom spacing. The crystals of the phospho-acceptor domain diffract X-rays beyond 2.0 Angstrom spacing using synchrotron radiation
- …
