49 research outputs found

    New Perspectives and a Review of Progress

    Get PDF
    This final chapter reviews a range of topics that could advance the field of lightinduced energy conversion, in particular, of photoelectrochemical approaches, beyond current research and development activities. This compilation represents a subjective view with data and results considered from the fields of photonics, electronics, electrochemistry and life sciences. Our view of the relevance of these topics to the content of this book is given in short notes, and suggestions are outlined about how to incorporate the concepts and findings into the next generation of solar fuel generating structures and devices. The chapter concludes with a brief survey of progress towards the ultimate goal of generating solar fuels

    Efficiency limits for photoelectrochemical water-splitting

    Get PDF
    Theoretical limiting efficiencies have a critical role in determining technological viability and expectations for device prototypes, as evidenced by the photovoltaics community’s focus on detailed balance. However, due to their multicomponent nature, photoelectrochemical devices do not have an equivalent analogue to detailed balance, and reported theoretical efficiency limits vary depending on the assumptions made. Here we introduce a unified framework for photoelectrochemical device performance through which all previous limiting efficiencies can be understood and contextualized. Ideal and experimentally realistic limiting efficiencies are presented, and then generalized using five representative parameters—semiconductor absorption fraction, external radiative efficiency, series resistance, shunt resistance and catalytic exchange current density—to account for imperfect light absorption, charge transport and catalysis. Finally, we discuss the origin of deviations between the limits discussed herein and reported water-splitting efficiencies. This analysis provides insight into the primary factors that determine device performance and a powerful handle to improve device efficiency

    Genesis and Propagation of Fractal Structures During Photoelectrochemical Etching of n-Silicon

    Get PDF
    The genesis, propagation, and dimensions of fractal-etch patterns that form anodically on front- or back-illuminated n-Si(100) photoelectrodes in contact with 11.9 M NHâ‚„F(aq) has been investigated during either linear-sweep voltammetry or when the electrode was held at a constant potential (E = +6.0 V versus Ag/AgCl). Optical images collected in situ during electrochemical experiments revealed the location and underlying mechanism of initiation and propagation of the structures on the surface. X-ray photoelectron spectroscopic (XPS) data collected for samples emersed from the electrolyte at varied times provided detailed information about the chemistry of the surface during fractal etching. The fractal structure was strongly influenced by the orientation of the crystalline Si sample. The etch patterns were initially generated at points along the circumference of bubbles that formed upon immersion of n-Si(100) samples in the electrolyte, most likely due to the electrochemical and electronic isolation of areas beneath bubbles. XPS data showed the presence of a tensile-stressed silicon surface throughout the etching process as well as the presence of SiO_xF_y on the surface. The two-dimensional fractal dimension D_(f,2D) of the patterns increased with etching time to a maximum observed value of D_(f,2D)=1.82. Promotion of fractal etching near etch masks that electrochemically and electronically isolated areas of the photoelectrode surface enabled the selective placement of highly branched structures at desired locations on an electrode surface

    Preface—Focus Issue on Processes at the Semiconductor-Solution Interface

    Get PDF
    This focus issue addresses some of the cutting edge research themes in many processes that occur at the interface between a semiconductor and a solution. This interface, a pH and redox potential-controlled liquid analog to the metal-semiconductor interface, is where semiconductor electrochemistry occurs. With the advent of alternative approaches to lower cost and more efficient hydrogen production, to the energetics of the electrolyte-material interface for batteries, the physics and electrochemistry of solar photovoltaics, and transistor-based technologies that monitor liquid-based biological interactions and so much more, this interface remains central to the underlying mechanisms for so many multidisciplinary topics. Energy storage and conversion, materials design and characterization, environmental science and technology, and much more, rely on this critical interface as part of the scientific search for a sustainable energy future

    Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    Get PDF
    Photosynthesis is nature’s route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators

    Materials for light-induced water splitting: In situ controlled surface preparation of GaPN epilayers grown lattice-matched on Si(100)

    Get PDF
    Energy storage is a key challenge in solar-driven renewable energy conversion. We promote a photochemical diode based on dilute nitride GaPN grown lattice-matched on Si(100), which could reach both high photovoltaic efficiencies and evolve hydrogen directly without external bias. Homoepitaxial GaP(100) surface preparation was shown to have a significant impact on the semiconductor-water interface formation. Here, we grow a thin, pseudomorphic GaP nucleation buffer on almost single-domain Si(100) prior to GaPN growth and compare the GaP_(0.98)N_(0.02)/Si(100) surface preparation to established P- and Ga-rich surfaces of GaP/Si(100). We apply reflection anisotropy spectroscopy to study the surface preparation of GaP_(0.98)N_(0.02) in situ in vapor phase epitaxy ambient and benchmark the signals to low energy electron diffraction, photoelectron spectroscopy, and x-ray diffraction. While the preparation of the Ga-rich surface is hardly influenced by the presence of the nitrogen precursor 1,1-dimethylhydrazine (UDMH), we find that stabilization with UDMH after growth hinders well-defined formation of the V-rich GaP_(0.98)N_(0.02)/Si(100) surface. Additional features in the reflection anisotropy spectra are suggested to be related to nitrogen incorporation in the GaP bulk

    Genesis and Propagation of Fractal Structures During Photoelectrochemical Etching of n-Silicon

    Get PDF
    The genesis, propagation, and dimensions of fractal-etch patterns that form anodically on front- or back-illuminated n-Si(100) photoelectrodes in contact with 11.9 M NHâ‚„F(aq) has been investigated during either linear-sweep voltammetry or when the electrode was held at a constant potential (E = +6.0 V versus Ag/AgCl). Optical images collected in situ during electrochemical experiments revealed the location and underlying mechanism of initiation and propagation of the structures on the surface. X-ray photoelectron spectroscopic (XPS) data collected for samples emersed from the electrolyte at varied times provided detailed information about the chemistry of the surface during fractal etching. The fractal structure was strongly influenced by the orientation of the crystalline Si sample. The etch patterns were initially generated at points along the circumference of bubbles that formed upon immersion of n-Si(100) samples in the electrolyte, most likely due to the electrochemical and electronic isolation of areas beneath bubbles. XPS data showed the presence of a tensile-stressed silicon surface throughout the etching process as well as the presence of SiO_xF_y on the surface. The two-dimensional fractal dimension D_(f,2D) of the patterns increased with etching time to a maximum observed value of D_(f,2D)=1.82. Promotion of fractal etching near etch masks that electrochemically and electronically isolated areas of the photoelectrode surface enabled the selective placement of highly branched structures at desired locations on an electrode surface

    application of surface transformation films and nanosphere lithography

    Get PDF
    Photoelectrochemical (PEC) cells offer the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The pursued design involves technologically advanced III–V semiconductor absorbers coupled via an interfacial film to an electrocatalyst layer. These systems have been prepared by in situ surface transformations in electrochemical environments. High activity nanostructured electrocatalysts are required for an efficiently operating cell, optimized in their optical and electrical properties. We demonstrate that shadow nanosphere lithography (SNL) is an auspicious tool to systematically create three-dimensional electrocatalyst nanostructures on the semiconductor photoelectrode through controlling their morphology and optical properties. First results are demonstrated by means of the photoelectrochemical production of hydrogen on p-type InP photocathodes where hitherto applied photoelectrodeposition and SNL-deposited Rh electrocatalysts are compared based on their J–V and spectroscopic behavior. We show that smaller polystyrene particle masks achieve higher defect nanostructures of rhodium on the photoelectrode which leads to a higher catalytic activity and larger short circuit currents. Structural analyses including HRSEM and the analysis of the photoelectrode surface composition by using photoelectron spectroscopy support and complement the photoelectrochemical observations. The optical performance is further compared to theoretical models of the nanostructured photoelectrodes on light scattering and propagation

    Two stories from the ISACS 12 conference: solar-fuel devices and catalyst identification

    Get PDF
    The International Symposia for advancing the Chemical Sciences, a partner of the journal Chemical Science, held its 12th meeting (ISACS 12) at the University of Cambridge on September 3–6 2013. ISACS 12 focused on “Challenges in Chemical Renewable Energy”, with oral presentations organized along five themes: photovoltaics, solar fuels, molecular and bio-inspired catalysts, new materials for batteries, and fuel cells. ISACS 12 also included a presentation on the sugar cane-based energy industry in Brazil, a recording by the BBC World Service, and two poster sessions. This conference was an exciting, busy place to meet people, exchange ideas, and foster collaboration
    corecore