3,831 research outputs found

    Maneuvering the Dual Mode Manned/Automated Lunar Roving Vehicle, June 1969 - March 1970

    Get PDF
    Digital maps of hazards to movement for dual mode Lunar Roving Vehicl

    Modelling of the radio spectrum evolution in the binary pulsar B1259-63

    Get PDF
    In this paper we give the first attempt to model the evolution of the spectrum of PSR B1259-63 radio emission while the pulsar orbits the companion Be star. As suggested by Kijak et al. (Mon. Not. R. Astron. Soc. 418:L114, 2011a) this binary system can be useful in understanding the origin of the gigahertz-peaked spectrum of pulsars. The model explains, at least qualitatively, the observed alterations of the spectral shape depending on the orbital phases of this pulsar. Thus, our results support the hypothesis that the external factors have a significant impact on the observed radio emission of a pulsar. The model can also contribute to our understanding of the origin of some non-typical spectral shapes(e.g. flat or broken spectra).Comment: 9 pages, 2 tables, 3 figure

    Isolated Horizon, Killing Horizon and Event Horizon

    Get PDF
    We consider space-times which in addition to admitting an isolated horizon also admit Killing horizons with or without an event horizon. We show that an isolated horizon is a Killing horizon provided either (1) it admits a stationary neighbourhood or (2) it admits a neighbourhood with two independent, commuting Killing vectors. A Killing horizon is always an isolated horizon. For the case when an event horizon is definable, all conceivable relative locations of isolated horizon and event horizons are possible. Corresponding conditions are given.Comment: 14 pages, Latex, no figures. Some arguments tightened. To appear in Class. Quant. Gra

    Generating Efficient Alternatives for Development in the Chemical Industry

    Get PDF
    Industrial development can be seen as the process of changing the production structure by means of investment over the course of time. To control this development to the benefit of society while maintaining the profitability of the industry, decision makers must learn how socioeconomic changes and market conditions affect the static and dynamic properties of the production structure. This paper reports on the progress of collaborative research into the design of tools which could help decision makers to control development in the chemical industry. The basic approach is to formulate a model of the equilibrium state of the industry or, in the case considered here, of a particular subsector of the industry. The development process is initially described by a static multiobjective optimization problem, from which a dynamic multiobjective optimization problem is then derived. An example illustrating the use of this method for the pesticide-producing sector is given. The optimization problem and method for controlling industrial development put forward in this paper were worked out as part of the research program on Growth Strategy Optimization Systems (GSOS), sponsored by the Ministry of the Chemical Industry in Poland. This program is actually carried out at the Institute for Control and Systems Engineering (ICSE), part of the Academy of Mining and Metallurgy (AMM) in Cracow. The multiobjective optimization method for generating efficient alternatives and the related software were developed by the System and Decision Sciences Area at IIASA. This collaborative research was carried out within the framework of the agreement on scientific cooperation cosigned by IIASA and the AMM in June 1980

    From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization

    No full text
    A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images

    From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization

    Get PDF
    A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images

    A search for varying fundamental constants using Hz-level frequency measurements of cold CH molecules

    Get PDF
    Many modern theories predict that the fundamental constants depend on time, position, or the local density of matter. We develop a spectroscopic method for pulsed beams of cold molecules, and use it to measure the frequencies of microwave transitions in CH with accuracy down to 3 Hz. By comparing these frequencies with those measured from sources of CH in the Milky Way, we test the hypothesis that fundamental constants may differ between the high and low density environments of the Earth and the interstellar medium. For the fine structure constant we find \Delta\alpha/\alpha = (0.3 +/- 1.1)*10^{-7}, the strongest limit to date on such a variation of \alpha. For the electron-to-proton mass ratio we find \Delta\mu/\mu = (-0.7 +/- 2.2) * 10^{-7}. We suggest how dedicated astrophysical measurements can improve these constraints further and can also constrain temporal variation of the constants.Comment: 8 pages, 3 figure

    Polymer and Fock representations for a Scalar field

    Get PDF
    In loop quantum gravity, matter fields can have support only on the `polymer-like' excitations of quantum geometry, and their algebras of observables and Hilbert spaces of states can not refer to a classical, background geometry. Therefore, to adequately handle the matter sector, one has to address two issues already at the kinematic level. First, one has to construct the appropriate background independent operator algebras and Hilbert spaces. Second, to make contact with low energy physics, one has to relate this `polymer description' of matter fields to the standard Fock description in Minkowski space. While this task has been completed for gauge fields, important gaps remained in the treatment of scalar fields. The purpose of this letter is to fill these gaps.Comment: 13 pages, no figure

    Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    Get PDF
    We show in the present study that the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal are biogenic volatile organic compound (BVOC) precursors for polar organosulfates with molecular weights (MWs) 230 and 214, which are also present in ambient fine aerosol from a forested site, i.e., K-puszta, Hungary. These results complement those obtained in a previous study showing that the green leaf aldehyde 3-Z-hexenal serves as a precursor for MW 226 organosulfates. Thus, in addition to isoprene, the green leaf volatiles (GLVs) 2-E-hexenal and 3-Z-hexenal, emitted due to plant stress (mechanical wounding or insect attack), and 2-E-pentenal, a photolysis product of 3-Z-hexenal, should be taken into account for secondary organic aerosol and organosulfate formation. Polar organosulfates are of climatic relevance because of their hydrophilic properties and cloud effects. Extensive use was made of organic mass spectrometry (MS) and detailed interpretation of MS data (i.e., ion trap MS and accurate mass measurements) to elucidate the chemical structures of the MW 230, 214 and 170 organosulfates formed from 2-E-pentenal and indirectly from 2-E-hexenal and 3-Z-hexenal. In addition, quantum chemical calculations were performed to explain the different mass spectral behavior of 2,3-dihydroxypentanoic acid sulfate derivatives, where only the isomer with the sulfate group at C-3 results in the loss of SO3. The MW 214 organosulfates formed from 2-E-pentenal are explained by epoxidation of the double bond in the gas phase and sulfation of the epoxy group with sulfuric acid in the particle phase through the same pathway as that proposed for 3-sulfooxy-2-hydroxy-2-methylpropanoic acid from the isoprene-related alpha,beta-unsaturated aldehyde methacrolein in previous work (Lin et al., 2013). The MW 230 organosulfates formed from 2-E-pentenal are tentatively explained by a novel pathway, which bears features of the latter pathway but introduces an additional hydroxyl group at the C-4 position. Evidence is also presented that the MW 214 positional isomer, 2-sulfooxy-3-hydroxypentanoic acid, is unstable and decarboxylates, giving rise to 1-sulfooxy-2-hydroxybutane, a MW 170 organosulfate. Furthermore, evidence is obtained that lactic acid sulfate is generated from 2-E-pentenal. This chemistry could be important on a regional and local scale where GLV emissions such as from grasses and cereal crops are substantial
    corecore