17,133 research outputs found
Capillarity Theory for the Fly-Casting Mechanism
Biomolecular folding and function are often coupled. During molecular
recognition events, one of the binding partners may transiently or partially
unfold, allowing more rapid access to a binding site. We describe a simple
model for this flycasting mechanism based on the capillarity approximation and
polymer chain statistics. The model shows that flycasting is most effective
when the protein unfolding barrier is small and the part of the chain which
extends towards the target is relatively rigid. These features are often seen
in known examples of flycasting in protein-DNA binding. Simulations of
protein-DNA binding based on well-funneled native-topology models with
electrostatic forces confirm the trends of the analytical theory
Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains
The magnetoresistance (MR) associated with domain boundaries has been
investigated in microfabricated bcc Fe (0.65 to 20 m linewidth) wires with
controlled stripe domains. Domain configurations have been characterized using
magnetic force microscopy. MR measurements as a function of field angle,
temperature and domain configuration are used to estimate MR contributions due
to resistivity anisotropy and domain walls. Evidence is presented that domain
boundaries enhance the conductivity in such microstructures over a broad range
of temperatures (1.5 K to 80 K).Comment: 8 pages, 3 postscript figures, and 2 jpg images (Fig 1 and 2) to
appear in IEEE Transactions on Magnetics (Fall 1998
Fe-doping-induced evolution of charge-orbital ordering in a bicritical-state manganite
Impurity effects on the stability of a ferromagnetic metallic state in a
bicritical-state manganite, (La0.7Pr0.3)0.65Ca0.35MnO3, on the verge of
metal-insulator transition have been investigated by substituting a variety of
transition-metal atoms for Mn ones. Among them, Fe doping exhibits the
exceptional ability to dramatically decrease the ferromagnetic transition
temperature. Systematic studies on the magnetotransport properties and x-ray
diffraction for the Fe-doped crystals have revealed that charge-orbital
ordering evolves down to low temperatures, which strongly suppresses the
ferromagnetic metallic state. The observed glassy magnetic and transport
properties as well as diffuse phase transition can be attributed to the
phase-separated state where short-range charge-orbital-ordered clusters are
embedded in the ferromagnetic metallic matrix. Such a behavior in the Fe-doped
manganites form a marked contrast to the Cr-doping effects on
charge-orbital-ordered manganites known as impurity-induced collapse of
charge-orbital ordering.Comment: 8 pages, 7 figure
A Few More Examples May Be Worth Billions of Parameters
We investigate the dynamics of increasing the number of model parameters versus the number of labeled examples across a wide variety of tasks. Our exploration reveals that while scaling parameters consistently yields performance improvements, the contribution of additional examples highly depends on the task's format. Specifically, in open question answering tasks, enlarging the training set does not improve performance. In contrast, classification, extractive question answering, and multiple choice tasks benefit so much from additional examples that collecting a few hundred examples is often “worth” billions of parameters. We hypothesize that unlike open question answering, which involves recalling specific information, solving strategies for tasks with a more restricted output space transfer across examples, and can therefore be learned with small amounts of labeled data
Recommended from our members
A Closer Look at the Performance of Neural Language Models on Reflexive Anaphor Licensing
An emerging line of work uses psycholinguistic methods to evaluate the syntactic generalizations acquired by neural language models (NLMs). While this approach has shown NLMs to be capable of learning a wide range of linguistic knowledge, confounds in the design of previous experiments may have obscured the potential of NLMs to learn certain grammatical phenomena. Here we re-evaluate the performance of a range of NLMs on reflexive anaphor licensing. Under our paradigm, the models consistently show stronger evidence of learning than reported in previous work. Our approach demonstrates the value of well-controlled psycholinguistic methods in gaining a fine-grained understanding of NLM learning potential
Evidences of a consolute critical point in the Phase Separation regime of La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single crystals
We report on DC and pulsed electric field sensitivity of the resistance of
mixed valent Mn oxide based La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single
crystals as a function of temperature. The low temperature regime of the
resistivity is highly current and voltage dependent. An irreversible transition
from high (HR) to a low resistivity (LR) is obtained upon the increase of the
electric field up to a temperature dependent critical value (V_c). The
current-voltage characteristics in the LR regime as well as the lack of a
variation in the magnetization response when V_c is reached indicate the
formation of a non-single connected filamentary conducting path. The
temperature dependence of V_c indicates the existence of a consolute point
where the conducting and insulating phases produce a critical behavior as a
consequence of their separation.Comment: 5 pages, 6 figures, corresponding author: C. Acha ([email protected]
Zero Temperature Phase Transition in Spin-ladders: Phase Diagram and Dynamical studies of Cu(Hp)Cl
In a magnetic field, spin-ladders undergo two zero-temperature phase
transitions at the critical fields Hc1 and Hc2. An experimental review of
static and dynamical properties of spin-ladders close to these critical points
is presented. The scaling functions, universal to all quantum critical points
in one-dimension, are extracted from (a) the thermodynamic quantities
(magnetization) and (b) the dynamical functions (NMR relaxation). A simple
mapping of strongly coupled spin ladders in a magnetic field on the exactly
solvable XXZ model enables to make detailed fits and gives an overall
understanding of a broad class of quantum magnets in their gapless phase
(between Hc1 and Hc2). In this phase, the low temperature divergence of the NMR
relaxation demonstrates its Luttinger liquid nature as well as the novel
quantum critical regime at higher temperature. The general behaviour close
these quantum critical points can be tied to known models of quantum magnetism.Comment: few corrections made, 15 pages, to be published in European Journal
of Physics
Phonon Thermal Transport of URu2Si2: Broken Translational Symmetry and Strong-Coupling of the Hidden Order to the Lattice
A dramatic increase in the total thermal conductivity (k) is observed in the
Hidden Order (HO) state of single crystal URu2Si2. Through measurements of the
thermal Hall conductivity, we explicitly show that the electronic contribution
to k is extremely small, so that this large increase in k is dominated by
phonon conduction. An itinerant BCS/mean-field model describes this behavior
well: the increase in kappa is associated with the opening of a large energy
gap at the Fermi Surface, thereby decreasing electron-phonon scattering. Our
analysis implies that the Hidden Order parameter is strongly coupled to the
lattice, suggestive of a broken symmetry involving charge degrees of freedom.Comment: 17 pages including figures, updated author institutions and
acknowledgement
Confinement Effects on the Kinetics and Thermodynamics of Protein Dimerization
In the cell, protein complexes form relying on specific interactions between
their monomers. Excluded volume effects due to molecular crowding would lead to
correlations between molecules even without specific interactions. What is the
interplay of these effects in the crowded cellular environment? We study
dimerization of a model homodimer both when the mondimers are free or tethered
to each other. We consider a structured environment: Two monomers first diffuse
into a cavity of size and then fold and bind within the cavity. The folding
and binding are simulated using molecular dynamics based on a simplified
topology based model. The {\it confinement} in the cell is described by an
effective molecular concentration . A two-state coupled folding
and binding behavior is found. We show the maximal rate of dimerization
occurred at an effective molecular concentration M which is a
relevant cellular concentration. In contrast, for tethered chains the rate
keeps at a plateau when .
For both the free and tethered cases, the simulated variation of the rate of
dimerization and thermodynamic stability with effective molecular concentration
agrees well with experimental observations. In addition, a theoretical argument
for the effects of confinement on dimerization is also made
- …