34,104 research outputs found

    Different steady states for spin currents in noncollinear multilayers

    Full text link
    We find there are at least two different steady states for transport across noncollinear magnetic multilayers. In the conventional one there is a discontinuity in the spin current across the interfaces which has been identified as the source of current induced magnetic reversal; in the one advocated herein the spin torque arises from the spin accumulation transverse to the magnetization of a magnetic layer. These two states have quite different attributes which should be discerned by current experiments.Comment: 8 pages, no figure. Accepted for publication in Journal of Physics: Condensed Matte

    Simultaneous electric and magnetic field induced nonvolatile memory

    Full text link
    We investigate the electric field induced resistive switching effect and magnetic field induced fraction enlargement on a polycrystalline sample of a colossal magnetoresistive compound displaying intrinsic phase coexistence. Our data show that the electric effect (presumably related to the presence of inhomogeinities) is present in a broad temperature range(300 to 20 K), being observable even in a mostly homogeneous ferromagnetic state. In the temperature range in which low magnetic field determines the phase coexistence fraction, both effects, though related to different mechanisms, are found to determine multilevel nonvolatile memory capabilities simultaneously.Comment: Submited to AP

    The steady state in noncollinear magnetic multilayers

    Full text link
    There are at least two different putative steady state solutions for current across noncollinear magnetic multilayers; one has a discontinuity in the spin current at the interface the other is continuous. We compare the resistance of the two and find the solution with the continuous spin currents is lower. By using the entropic principle we can state that this solution is a better estimate of the resistance for a noncollinear magneticComment: 14 pages, 4 figures,Submitted to Physical Review

    Ab initio studies of the spin-transfer torque in tunnel junctions

    Full text link
    We calculate the spin-transfer torque in Fe/MgO/Fe tunnel junctions and compare the results to those for all-metallic junctions. We show that the spin-transfer torque is interfacial in the ferromagnetic layer to a greater degree than in all-metallic junctions. This result originates in the half metallic behavior of Fe for the Δ1\Delta_1 states at the Brillouin zone center; in contrast to all-metallic structures, dephasing does not play an important role. We further show that it is possible to get a component of the torque that is out of the plane of the magnetizations and that is linear in the bias. However, observation of such a torque requires highly ideal samples. In samples with typical interfacial roughness, the torque is similar to that in all-metallic multilayers, although for different reasons.Comment: 5 pages, 4 figure

    Lateral diffusive spin transport in layered structures

    Full text link
    A one dimensional theory of lateral spin-polarized transport is derived from the two dimensional flow in the vertical cross section of a stack of ferromagnetic and paramagnetic layers. This takes into account the influence of the lead on the lateral current underneath, in contrast to the conventional 1D modeling by the collinear configuration of lead/channel/lead. Our theory is convenient and appropriate for the current in plane configuration of an all-metallic spintronics structure as well as for the planar structure of a semiconductor with ferromagnetic contacts. For both systems we predict the optimal contact width for maximal magnetoresistance and propose an electrical measurement of the spin diffusion length for a wide range of materials.Comment: 4 pages, 3 figure

    Electronic inhomogeneity at magnetic domain walls in strongly-correlated systems

    Full text link
    We show that nano-scale variations of the order parameter in strongly-correlated systems can induce local spatial regions such as domain walls that exhibit electronic properties representative of a different, but nearby, part of the phase diagram. This is done by means of a Landau-Ginzburg analysis of a metallic ferromagnetic system near an antiferromagnetic phase boundary. The strong spin gradients at a wall between domains of different spin orientation drive the formation of a new type of domain wall, where the central core is an insulating antiferromagnet, and connects two metallic ferromagnetic domains. We calculate the charge transport properties of this wall, and find that its resistance is large enough to account for recent experimental results in colossal magnetoresistance materials. The technological implications of this finding for switchable magnetic media are discussed.Comment: Version submitted to Physical Review Letters, except for minor revisions to reference

    Development of technology for modeling of a 1/8-scale dynamic model of the shuttle Solid Rocket Booster (SRB)

    Get PDF
    A NASTRAN analysis of the solid rocket booster (SRB) substructure of the space shuttle 1/8-scale structural dynamics model. The NASTRAN finite element modeling capability was first used to formulate a model of a cylinder 10 in. radius by a 200 in. length to investigate the accuracy and adequacy of the proposed grid point spacing. Results were compared with a shell analysis and demonstrated relatively accurate results for NASTRAN for the lower modes, which were of primary interest. A finite element model of the full SRB was then formed using CQUAD2 plate elements containing membrane and bending stiffness and CBAR offset bar elements to represent the longerons and frames. Three layers of three-dimensional CHEXAI elements were used to model the propellant. This model, consisting of 4000 degrees of freedom (DOF) initially, was reduced to 176 DOF using Guyan reduction. The model was then submitted for complex Eigenvalue analysis. After experiencing considerable difficulty with attempts to run the complete model, it was split into two substructres. These were run separately and combined into a single 116 degree of freedom A set which was successfully run. Results are reported

    Half-metallic ferromagnets for magnetic tunnel junctions

    Get PDF
    Using theoretical arguments, we show that, in order to exploit half-metallic ferromagnets in tunneling magnetoresistance (TMR) junctions, it is crucial to eliminate interface states at the Fermi level within the half-metallic gap; contrary to this, no such problem arises in giant magnetoresistance elements. Moreover, based on an a priori understanding of the electronic structure, we propose an antiferromagnetically coupled TMR element, in which interface states are eliminated, as a paradigm of materials design from first principles. Our conclusions are supported by ab-initio calculations

    Scale invariant correlations and the distribution of prime numbers

    Full text link
    Negative correlations in the distribution of prime numbers are found to display a scale invariance. This occurs in conjunction with a nonstationary behavior. We compare the prime number series to a type of fractional Brownian motion which incorporates both the scale invariance and the nonstationary behavior. Interesting discrepancies remain. The scale invariance also appears to imply the Riemann hypothesis and we study the use of the former as a test of the latter.Comment: 13 pages, 8 figures, version to appear in J. Phys.
    corecore