43,389 research outputs found

    Simultaneous electric and magnetic field induced nonvolatile memory

    Full text link
    We investigate the electric field induced resistive switching effect and magnetic field induced fraction enlargement on a polycrystalline sample of a colossal magnetoresistive compound displaying intrinsic phase coexistence. Our data show that the electric effect (presumably related to the presence of inhomogeinities) is present in a broad temperature range(300 to 20 K), being observable even in a mostly homogeneous ferromagnetic state. In the temperature range in which low magnetic field determines the phase coexistence fraction, both effects, though related to different mechanisms, are found to determine multilevel nonvolatile memory capabilities simultaneously.Comment: Submited to AP

    Context unification is in PSPACE

    Full text link
    Contexts are terms with one `hole', i.e. a place in which we can substitute an argument. In context unification we are given an equation over terms with variables representing contexts and ask about the satisfiability of this equation. Context unification is a natural subvariant of second-order unification, which is undecidable, and a generalization of word equations, which are decidable, at the same time. It is the unique problem between those two whose decidability is uncertain (for already almost two decades). In this paper we show that the context unification is in PSPACE. The result holds under a (usual) assumption that the first-order signature is finite. This result is obtained by an extension of the recompression technique, recently developed by the author and used in particular to obtain a new PSPACE algorithm for satisfiability of word equations, to context unification. The recompression is based on performing simple compression rules (replacing pairs of neighbouring function symbols), which are (conceptually) applied on the solution of the context equation and modifying the equation in a way so that such compression steps can be in fact performed directly on the equation, without the knowledge of the actual solution.Comment: 27 pages, submitted, small notation changes and small improvements over the previous tex

    Influenza control can be achieved in a custodial setting: pandemic (H1N1) 2009 and 2011 in an Australian prison

    Get PDF
    OBJECTIVES: Information on the effectiveness of interventions regarding control in closed institutional settings, including prisons, is limited. This study gathered evidence relating to influenza control in an Australian prison. STUDY DESIGN: This study built on a 2009 H1N1 outbreak investigation at the Alexander Maconochie Centre (AMC) in the Australian Capital Territory (ACT). METHODS: Influenza surveillance data, ACT 2010 Inmate Health Survey data, New South Wales 2001 and 2009 Inmate Health Survey data, ACT Department of Corrective Services administrative data, and ACT Health clinical data were analysed. RESULTS: In 2011, the AMC was exposed to influenza virus, resulting in a single case. Public health activities included exclusion of symptomatic cases from the health facility, isolation of cases, and quarantine of contacts. Contact between prisoners and the ACT community was maintained; the AMC detainee visitor rate was one visitor per prisoner every 10 days. CONCLUSIONS: The rehabilitative benefits of human contact for AMC detainees were not compromised during the surveillance period, despite the potential that a higher visitor rate may suggest. This highlights some features of the AMC which make its operational context different from many other correctional settings, but gives some indication of how good public health practice supports human rights.NHMRC (National Health and Medical Research Council of Australia

    Scale invariant correlations and the distribution of prime numbers

    Full text link
    Negative correlations in the distribution of prime numbers are found to display a scale invariance. This occurs in conjunction with a nonstationary behavior. We compare the prime number series to a type of fractional Brownian motion which incorporates both the scale invariance and the nonstationary behavior. Interesting discrepancies remain. The scale invariance also appears to imply the Riemann hypothesis and we study the use of the former as a test of the latter.Comment: 13 pages, 8 figures, version to appear in J. Phys.

    Resonant tunneling through a small quantum dot coupled to superconducting leads

    Full text link
    We address the problem of non-linear transport through discrete electronic levels in a small quantum dot coupled to superconducting electrodes. In our approach the low temperature I-V characteristics can be calculated including all multiple quasi-particle and Andreev processes. The limit of very weak coupling to the leads and large charging energies is briefly analyzed comparing the calculated lineshapes of the I-V curves with recent experimental results. When the coupling to the leads increases and Coulomb blockade effects can be neglected, the combination of multiple Andreev processes and resonant transmission gives rise to a rich subgap structure which largely differs from the one found in the more studied S-N-S systems. We show how multiple processes can be included within a simple sequential tunneling picture qualitatively explaining the subgap structure. We suggest an experimental set-up where the predicted effects could be observed.Comment: 11 pages, 4 postscript figures, to be published in Phys. Rev. B (rapid communications

    Development of technology for modeling of a 1/8-scale dynamic model of the shuttle Solid Rocket Booster (SRB)

    Get PDF
    A NASTRAN analysis of the solid rocket booster (SRB) substructure of the space shuttle 1/8-scale structural dynamics model. The NASTRAN finite element modeling capability was first used to formulate a model of a cylinder 10 in. radius by a 200 in. length to investigate the accuracy and adequacy of the proposed grid point spacing. Results were compared with a shell analysis and demonstrated relatively accurate results for NASTRAN for the lower modes, which were of primary interest. A finite element model of the full SRB was then formed using CQUAD2 plate elements containing membrane and bending stiffness and CBAR offset bar elements to represent the longerons and frames. Three layers of three-dimensional CHEXAI elements were used to model the propellant. This model, consisting of 4000 degrees of freedom (DOF) initially, was reduced to 176 DOF using Guyan reduction. The model was then submitted for complex Eigenvalue analysis. After experiencing considerable difficulty with attempts to run the complete model, it was split into two substructres. These were run separately and combined into a single 116 degree of freedom A set which was successfully run. Results are reported

    Half-metallic ferromagnets for magnetic tunnel junctions

    Get PDF
    Using theoretical arguments, we show that, in order to exploit half-metallic ferromagnets in tunneling magnetoresistance (TMR) junctions, it is crucial to eliminate interface states at the Fermi level within the half-metallic gap; contrary to this, no such problem arises in giant magnetoresistance elements. Moreover, based on an a priori understanding of the electronic structure, we propose an antiferromagnetically coupled TMR element, in which interface states are eliminated, as a paradigm of materials design from first principles. Our conclusions are supported by ab-initio calculations
    corecore