43,795 research outputs found
The simplest derivation of the Lorentz transformation
Starting from the well-known light-clock thought experiment to derive time
dilation and length contraction, it is shown that finding the Lorentz
Transformation requires nothing more than the most trivial vector addition
formula. The form which is obtaine for the L.T. allows an easy derivation of
the velocity and acceleration transformations which are also given.Comment: Latex, 4 pages, 1 figure. Two first paragraphs rewritten. Error in
formula corrected. Various typo corrected. Example added (Should really be
V3. But V3 identical to V2 for some reason
A consistent interpretation of the Karmen anomaly
The Karmen anomaly can be interpreted as being due to a heavy neutrino of
mass around 137 MeV produced in decays. This interpretation is
consistent with the present limits on the couplings of such an object.Comment: 11pages, 4figures, Te
Different steady states for spin currents in noncollinear multilayers
We find there are at least two different steady states for transport across
noncollinear magnetic multilayers. In the conventional one there is a
discontinuity in the spin current across the interfaces which has been
identified as the source of current induced magnetic reversal; in the one
advocated herein the spin torque arises from the spin accumulation transverse
to the magnetization of a magnetic layer. These two states have quite different
attributes which should be discerned by current experiments.Comment: 8 pages, no figure. Accepted for publication in Journal of Physics:
Condensed Matte
Optical scanning tests of complex CMOS microcircuits
The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested
Context unification is in PSPACE
Contexts are terms with one `hole', i.e. a place in which we can substitute
an argument. In context unification we are given an equation over terms with
variables representing contexts and ask about the satisfiability of this
equation. Context unification is a natural subvariant of second-order
unification, which is undecidable, and a generalization of word equations,
which are decidable, at the same time. It is the unique problem between those
two whose decidability is uncertain (for already almost two decades). In this
paper we show that the context unification is in PSPACE. The result holds under
a (usual) assumption that the first-order signature is finite.
This result is obtained by an extension of the recompression technique,
recently developed by the author and used in particular to obtain a new PSPACE
algorithm for satisfiability of word equations, to context unification. The
recompression is based on performing simple compression rules (replacing pairs
of neighbouring function symbols), which are (conceptually) applied on the
solution of the context equation and modifying the equation in a way so that
such compression steps can be in fact performed directly on the equation,
without the knowledge of the actual solution.Comment: 27 pages, submitted, small notation changes and small improvements
over the previous tex
The steady state in noncollinear magnetic multilayers
There are at least two different putative steady state solutions for current
across noncollinear magnetic multilayers; one has a discontinuity in the spin
current at the interface the other is continuous. We compare the resistance of
the two and find the solution with the continuous spin currents is lower. By
using the entropic principle we can state that this solution is a better
estimate of the resistance for a noncollinear magneticComment: 14 pages, 4 figures,Submitted to Physical Review
The Fractal Dimension of SAT Formulas
Modern SAT solvers have experienced a remarkable progress on solving
industrial instances. Most of the techniques have been developed after an
intensive experimental testing process. Recently, there have been some attempts
to analyze the structure of these formulas in terms of complex networks, with
the long-term aim of explaining the success of these SAT solving techniques,
and possibly improving them.
We study the fractal dimension of SAT formulas, and show that most industrial
families of formulas are self-similar, with a small fractal dimension. We also
show that this dimension is not affected by the addition of learnt clauses. We
explore how the dimension of a formula, together with other graph properties
can be used to characterize SAT instances. Finally, we give empirical evidence
that these graph properties can be used in state-of-the-art portfolios.Comment: 20 pages, 11 Postscript figure
Command system study for the operation and control of unmanned scientific satellites. task ii closed-loop /feedback/ verification techniques second quarterly progress report, 30 sep. - 31 dec. 1964
Closed loop, feedback verification techniques for command system of unmanned scientific satellit
- …