20,038 research outputs found
AGGREGATE STABILITY AND WATER RETENTION NEAR SATURATION CHARACTERISTICS AS AFFECTED BY SOIL TEXTURE, AGGREGATE SIZE AND POLYACRYLAMIDE APPLICATION
Understanding the effects of soil intrinsic properties and extrinsic conditions on aggregate stability is essential for the development of effective soil and water conservation practices. Our objective was to evaluate the combined role of soil texture, aggregate size and application of a stabilizing agent on aggregate and structure stability indices (composite structure index [SI], the and n parameters of the VG model and the S-index) by employing the high energy (0-5.0 J kg(-1)) moisture characteristic (HEMC) method. We used aggregates of three sizes (0.25-0.5, 0.5-1.0 and 1.0-2.0 mm) from four semi-arid soils treated with polyacrylamide (PAM). An increase in SI was associated with the increase in clay content, aggregate size and PAM application. The value of increased with the increase in aggregate size and with PAM application but was not affected by soil texture. For each aggregate size, a unique exponential type relationship existed between SI and . The value of n and the S-index tended, generally, to decrease with the increase in PAM application; however, an increase in aggregate size had an inconsistent effect on these two indices. The relationship between SI and n or the S-index could not be generalized. Our results suggest that (i) the effects of PAM on aggregate stability are not trivial, and its application as a soil conservation tool should consider field soil condition, and (ii), n and S-index cannot replace the SI as a solid measure for aggregate stability and soil structure firmness when assessing soil conservation practices
Hysteresis Switching Loops in Ag-manganite memristive interfaces
Multilevel resistance states in silver-manganite interfaces are studied both
experimentally and through a realistic model that includes as a main ingredient
the oxygen vacancies diffusion under applied electric fields. The switching
threshold and amplitude studied through Hysteresis Switching Loops are found to
depend critically on the initial state. The associated vacancy profiles further
unveil the prominent role of the effective electric field acting at the
interfaces. While experimental results validate main assumptions of the model,
the simulations allow to disentangle the microscopic mechanisms behind the
resistive switching in metal-transition metal oxide interfaces.Comment: 14 pages, 3 figures, to be published in Jour. of Appl. Phy
Structure and spatial distribution of Ge nanocrystals subjected to fast neutron irradiation
The influence of fast neutron irradiation on the structure and spatial
distribution of Ge nanocrystals (NC) embedded in an amorphous SiO2 matrix has
been studied. The investigation was conducted by means of laser Raman
Scattering (RS), High Resolution Transmission Electron Microscopy (HR-TEM) and
X-ray photoelectron spectroscopy (XPS). The irradiation of NC-Ge samples by a
high dose of fast neutrons lead to a partial destruction of the nanocrystals.
Full reconstruction of crystallinity was achieved after annealing the radiation
damage at 800 deg. C, which resulted in full restoration of the RS spectrum.
HR-TEM images show, however, that the spatial distributions of NC-Ge changed as
a result of irradiation and annealing. A sharp decrease in NC distribution
towards the SiO2 surface has been observed. This was accompanied by XPS
detection of Ge oxides and elemental Ge within both the surface and subsurface
region
Boulder Bands on Lobate Debris Aprons: Does Spatial Clustering Reveal Accumulation History for Martian Glaciations?
Glacial landforms such as lobate debris aprons (LDA) and Concentric Crater Fill (CCF) are the dominant debris-covered glacial landforms on Mars. These landforms represent a volumetrically significant component of the Amazonian water ice budget, however, because small craters (diameter D 0.5-1 km) are poorly retained glacial brain terrain surfaces, and, since the glacial landforms are geologically young, it is challenging to reliably constrain either individual glacial deposit ages or formational sequences in order to determine how quickly the glaciers accumulated. A fundamental question remaining is whether ice deposition and flow that formed LDA occurred episodically during a few, short instances, or whether glacial flow was quasi-continuous over a long period (~108 yr). Because glaciation is thought to be controlled largely by obliquity excursions, a larger question is whether glacial deposits on Mars exhibit regional to global characteristics that can be used to infer synchronicity of flow or degradation
A computational scheme to evaluate Hamaker constants of molecules with practical size and anisotropy
We propose a computational scheme to evaluate Hamaker constants, , of
molecules with practical sizes and anisotropies. Upon the increasing
feasibility of diffusion Monte Carlo (DMC) methods to evaluate binding curves
for such molecules to extract the constants, we discussed how to treat the
averaging over anisotropy and how to correct the bias due to the
non-additivity. We have developed a computational procedure for dealing with
the anisotropy and reducing statistical errors and biases in DMC valuations,
based on possible validations on predicted . We applied the scheme to
cyclohexasilane molecule, SiH, used in 'printed electronics'
fabrications, getting [zJ], being in plausible range
supported even by other possible extrapolations. The scheme provided here would
open a way to use handy {\it ab initio} evaluations to predict wettabilities as
in the form of materials informatics over broader molecules.Comment: The manuscript was revised according to review comment
Evidences of a consolute critical point in the Phase Separation regime of La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single crystals
We report on DC and pulsed electric field sensitivity of the resistance of
mixed valent Mn oxide based La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single
crystals as a function of temperature. The low temperature regime of the
resistivity is highly current and voltage dependent. An irreversible transition
from high (HR) to a low resistivity (LR) is obtained upon the increase of the
electric field up to a temperature dependent critical value (V_c). The
current-voltage characteristics in the LR regime as well as the lack of a
variation in the magnetization response when V_c is reached indicate the
formation of a non-single connected filamentary conducting path. The
temperature dependence of V_c indicates the existence of a consolute point
where the conducting and insulating phases produce a critical behavior as a
consequence of their separation.Comment: 5 pages, 6 figures, corresponding author: C. Acha ([email protected]
Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II
Extremely radiation hard sensors are needed in particle physics experiments
to instrument the region near the beam pipe. Examples are beam halo and beam
loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial
diamond sensors are widely used. In this paper single crystal sapphire sensors
are considered as a promising alternative. Industrially grown sapphire wafers
are available in large sizes, are of low cost and, like diamond sensors, can be
operated without cooling. Here we present results of an irradiation study done
with sapphire sensors in a high intensity low energy electron beam. Then, a
multichannel direction-sensitive sapphire detector stack is described. It
comprises 8 sapphire plates of 1 cm^2 size and 525 micro m thickness,
metallized on both sides, and apposed to form a stack. Each second metal layer
is supplied with a bias voltage, and the layers in between are connected to
charge-sensitive preamplifiers. The performance of the detector was studied in
a 5 GeV electron beam. The charge collection efficiency measured as a function
of the bias voltage rises with the voltage, reaching about 10 % at 950 V. The
signal size obtained from electrons crossing the stack at this voltage is about
22000 e, where e is the unit charge.
The signal size is measured as a function of the hit position, showing
variations of up to 20 % in the direction perpendicular to the beam and to the
electric field. The measurement of the signal size as a function of the
coordinate parallel to the electric field confirms the prediction that mainly
electrons contribute to the signal. Also evidence for the presence of a
polarisation field was observed.Comment: 13 pages, 7 figures, 3 table
- …