326 research outputs found

    Carbon Free Boston: Technical Summary

    Full text link
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Transportation Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Energy Technical Report; Carbon Free Boston: Offsets Technical Report; Available at http://sites.bu.edu/cfb/OVERVIEW: This technical summary is intended to argument the rest of the Carbon Free Boston technical reports that seek to achieve this goal of deep mitigation. This document provides below: a rationale for carbon neutrality, a high level description of Carbon Free Boston’s analytical approach; a summary of crosssector strategies; a high level analysis of air quality impacts; and, a brief analysis of off-road and street light emissions.Published versio

    Qualitative study of system-level factors related to genomic implementation

    Get PDF
    PURPOSE: Research on genomic medicine integration has focused on applications at the individual level, with less attention paid to implementation within clinical settings. Therefore, we conducted a qualitative study using the Consolidated Framework for Implementation Research (CFIR) to identify system-level factors that played a role in implementation of genomic medicine within Implementing GeNomics In PracTicE (IGNITE) Network projects. METHODS: Up to four study personnel, including principal investigators and study coordinators from each of six IGNITE projects, were interviewed using a semistructured interview guide that asked interviewees to describe study site(s), progress at each site, and factors facilitating or impeding project implementation. Interviews were coded following CFIR inner-setting constructs. RESULTS: Key barriers included (1) limitations in integrating genomic data and clinical decision support tools into electronic health records, (2) physician reluctance toward genomic research participation and clinical implementation due to a limited evidence base, (3) inadequate reimbursement for genomic medicine, (4) communication among and between investigators and clinicians, and (5) lack of clinical and leadership engagement. CONCLUSION: Implementation of genomic medicine is hindered by several system-level barriers to both research and practice. Addressing these barriers may serve as important facilitators for studying and implementing genomics in practice

    The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2

    Get PDF
    Understanding the circumstances that lead to pandemics is important for their prevention. Here, we analyze the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted A and B. Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October–8 December), while the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans prior to November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events

    The White Mountain Polarimeter Telescope and an Upper Limit on CMB Polarization

    Get PDF
    The White Mountain Polarimeter (WMPol) is a dedicated ground-based microwave telescope and receiver system for observing polarization of the Cosmic Microwave Background. WMPol is located at an altitude of 3880 meters on a plateau in the White Mountains of Eastern California, USA, at the Barcroft Facility of the University of California White Mountain Research Station. Presented here is a description of the instrument and the data collected during April through October 2004. We set an upper limit on EE-mode polarization of 14 μK\mu\mathrm{K} (95% confidence limit) in the multipole range 170<ℓ<240170<\ell<240. This result was obtained with 422 hours of observations of a 3 deg2\mathrm{deg}^2 sky area about the North Celestial Pole, using a 42 GHz polarimeter. This upper limit is consistent with EEEE polarization predicted from a standard Λ\Lambda-CDM concordance model.Comment: 35 pages. 12 figures. To appear in ApJ
    • …
    corecore