451 research outputs found

    A Reverse Monte Carlo study of H+D Lyman alpha absorption from QSO spectra

    Get PDF
    A new method based on a Reverse Monte Carlo [RMC] technique and aimed at the inverse problem in the analysis of interstellar (intergalactic) absorption lines is presented. The line formation process in chaotic media with a finite correlation length (l>0)(l > 0) of the stochastic velocity field (mesoturbulence) is considered. This generalizes the standard assumption of completely uncorrelated bulk motions (l0)(l \equiv 0) in the microturbulent approximation which is used for the data analysis up-to-now. It is shown that the RMC method allows to estimate from an observed spectrum the proper physical parameters of the absorbing gas and simultaneously an appropriate structure of the velocity field parallel to the line-of-sight. The application to the analysis of the H+D Lyα\alpha profile is demonstrated using Burles & Tytler [B&T] data for QSO 1009+2956 where the DI Lyα\alpha line is seen at za=2.504z_a = 2.504. The results obtained favor a low D/H ratio in this absorption system, although our upper limit for the hydrogen isotopic ratio of about 4.5×1054.5\times10^{-5} is slightly higher than that of B&T (D/H = 3.00.5+0.6×1053.0^{+0.6}_{-0.5} \times 10^{-5}). We also show that the D/H and N(HI) values are, in general, correlated, i.e. the derived D-abundance may be badly dependent on the assumed hydrogen column density. The corresponding confidence regions for an arbitrary and a fixed stochastic velocity field distribution are calculated.Comment: 6 pages, LaTeX, 2 Postscript figures, to appear in "The Primordial Nuclei and Their Galactic Evolution", eds. N. Prantzos, M. Tosi, R. von Steiger (Kluwer: Dordrecht

    Metal abundances and kinematics of quasar absorbers.- I. Absorption systems toward J2233-606

    Get PDF
    The metal line profiles of different ions observed in high HI column density systems [N(HI) > 10^{16} cm^{-2}] in quasar spectra can be used to constrain the ionization structure and kinematic characteristics of the absorbers. For these purposes, a modified Monte Carlo Inversion (MCI) procedure was applied to the study of three absorption systems in the spectrum of the HDF-South quasar J2233-606 obtained with the UVES spectrograph at the VLT/Kueyen telescope. The MCI does not confirm variations of metal abundances within separate systems which were discussed in the literature. Instead, we found that an assumption of a homogeneous metal content and a unique photoionizing background is sufficient to describe the observed complex metal profiles. It was also found that the linear size L and the line-of-sight velocity dispersion sigma_v measured within the absorbers obey a scaling relation, namely, sigma_v increases with increasing L, and that metal abundance is inversely proportional to the linear size of the system: the highest metallicity was measured in the system with the smallest L.Comment: 10 pages, 7 ps figures, accepted to A&

    The deuterium abundance in QSO absorption systems: a mesoturbulent approach

    Get PDF
    A new method, based on simulated annealing technique and aimed at the inverse problem in the analysis of intergalactic or interstellar complex spectra of hydrogen and metal lines, is outlined. We consider the process of line formation in clumpy stochastic media accounting for fluctuating velocity and density fields self-consistently. Two examples of the analysis of `H+D'-like absorptions seen at z = 3.514 and 3.378 towards APM 08279+5255 are presented.Comment: 6 pages, 2 eps figures, newpasp.sty file, to appear in the Proceedings of the IAU Symposium 198 "The light elements and their evolution", November 22-27, 1999, Natal, Brazi

    Sensitivity of the H3O+ inversion-rotational spectrum to changes in m_e/m_p

    Full text link
    Quantum mechanical tunneling inversion transition in ammonia NH3 is actively used as a sensitive tool to study possible variations of the electron-to-proton mass ratio, mu = m_e/m_p. The molecule H3O+ has the inversion barrier significantly lower than that of NH3. Consequently, its tunneling transition occurs in the far-infrared (FIR) region and mixes with rotational transitions. Several such FIR and submillimiter transitions are observed from the interstellar medium in the Milky Way and in nearby galaxies. We show that the rest-frame frequencies of these transitions are very sensitive to the variation of mu, and that their sensitivity coefficients have different signs. Thus, H3O+ can be used as an independent target to test hypothetical changes in mu measured at different ambient conditions of high (terrestrial) and low (interstellar medium) matter densities. The environmental dependence of mu and coupling constants is suggested in a class of chameleon-type scalar field models - candidates to dark energy carrier.Comment: 8 pages, 2 figures, accepted to ApJ; v2: reformatted for ApJ and discussion of systematics significantly extende

    QSO 0347-383 and the invariance of m_p/m_e in the course of cosmic time

    Full text link
    The variation of the dimensionless fundamental physical constant mu = m_p/m_e (the proton to electron mass ratio) can be constrained via observation of Lyman and Werner lines of molecular hydrogen in the spectra of damped Lyman alpha systems (DLAs) in the line of sight to distant QSOs. Drawing on VLT-UVES high resolution data sets of QSO 0347-383 and its DLA obtained in 2009 our analysis yields dmu/mu = (4.3 +/- 7.2) * 10^-6 at z_abs =3.025. We apply corrections for the observed offsets between discrete spectra and for the first time we find indications for inter-order distortions. Current analyses tend to underestimate the impact of systematic errors. Based on the scatter of the measured redshifts and the corresponding low significance of the redshift-sensitivity correlation we estimate the limit of accuracy of line position measurements to about 220 m/s, consisting of roughly 150 m/s due to the uncertainty of the absorption line fit and about 150 m/s allocated to systematics related to instrumentation and calibration.Comment: 9 pages, 9 figures, accepted for publication in A&

    First measurement of Mg isotope abundances at high redshifts and accurate estimate of Delta alpha/alpha

    Full text link
    (Abridged) We use a high-resolution spectrum of the quasar HE0001-2340 observed with the UVES/VLT to measure Mg isotope abundances in the intervening absorption-line systems at high redshifts. Line profiles are prepared accounting for possible shifts between the individual exposures. Due to unique composition of the selected systems - the presence of several transitions of the same ion - we can test the local accuracy of the wavelength scale calibration which is the main source of errors in the sub-pixel line position measurements. In the system at zabs = 0.45 which is probably a fragment of the outflow caused by SN Ia explosion of high-metallicity white dwarf(s) we measured velocity shifts of MgII and MgI lines relative to other lines (FeI, FeII, CaI, CaII): Delta V(MgII) = -0.44 +/- 0.05 km/s and Delta V(MgI) = -0.17 +/- 0.17$ km/s. This translates into the isotopic ratio 24Mg:25Mg:26Mg = (19 +/- 11):(22 +/- 13):(59 +/- 6) with a strong relative overabundance of heavy Mg isotopes, (25Mg+26Mg)/24Mg = 4, as compared to the solar ratio 24Mg:25Mg:26Mg = 79:10:11, and (25Mg+26Mg)/24Mg = 0.3. At zabs = 1.58, we put a strong constraint on a putative variation of alpha: Delta alpha/alpha = (-1.5 +/- 2.6)x10^{-6} which is one of the most stringent limits obtained from optical spectra of QSOs. We reveal that the wavelength calibration in the range above 7500 A is subject to systematic wavelength-dependent drifts.Comment: 20 pages, 13 figures, 7 tables. Accepted for publication in Astronomy and Astrophysic
    corecore