345 research outputs found

    Targeting a phospho-STAT3-miRNAs pathway improves vesicular hepatic steatosis in an in vitro and in vivo model

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease. Although genetic predisposition and epigenetic factors contribute to the development of NAFLD, our understanding of the molecular mechanism involved in the pathogenesis of the disease is still emerging. Here we investigated a possible role of a microRNAs-STAT3 pathway in the induction of hepatic steatosis. Differentiated HepaRG cells treated with the fatty acid sodium oleate (fatty dHepaRG) recapitulated features of liver vesicular steatosis and activated a cell-autonomous inflammatory response, inducing STAT3-Tyrosine-phosphorylation. With a genome-wide approach (Chromatin Immunoprecipitation Sequencing), many phospho-STAT3 binding sites were identified in fatty dHepaRG cells and several STAT3 and/or NAFLD-regulated microRNAs showed increased expression levels, including miR-21. Innovative CARS (Coherent Anti-Stokes Raman Scattering) microscopy revealed that chemical inhibition of STAT3 activity decreased lipid accumulation and deregulated STAT3-responsive microRNAs, including miR-21, in lipid overloaded dHepaRG cells. We were able to show in vivo that reducing phospho-STAT3-miR-21 levels in C57/BL6 mice liver, by long-term treatment with metformin, protected mice from aging-dependent hepatic vesicular steatosis. Our results identified a microRNAs-phosphoSTAT3 pathway involved in the development of hepatic steatosis, which may represent a molecular marker for both diagnosis and therapeutic targeting

    Genome-wide identification of direct HBx genomic targets

    Get PDF
    Background: The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. Results: ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. Conclusions: Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication

    The scientific basis of combination therapy for chronic hepatitis B functional cure

    Get PDF
    Functional cure of chronic hepatitis B (CHB) — or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy — is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available

    Structural variations of vaginal and endometrial microbiota. Hints on female infertility

    Get PDF
    Microbiota are microorganismal communities colonizing human tissues exposed to the external environment, including the urogenital tract. The bacterial composition of the vaginal microbiota has been established and is partially related to obstetric outcome, while the uterine microbiota, considered to be a sterile environment for years, is now the focus of more extensive studies and debates. The characterization of the microbiota contained in the reproductive tract (RT) of asymptomatic and infertile women, could define a specific RT microbiota associated with implantation failure. In this pilot study, 34 women undergoing personalized hormonal stimulation were recruited and the biological samples of each patient, vaginal fluid, and endometrial biopsy, were collected immediately prior to oocyte-pick up, and sequenced. Women were subsequently divided into groups according to fertilization outcome. Analysis of the 16s rRNA V4-V5 region revealed a significant difference between vaginal and endometrial microbiota. The vaginal microbiota of pregnant women corroborated previous data, exhibiting a lactobacilli-dominant habitat compared to non-pregnant cases, while the endometrial bacterial colonization was characterized by a polymicrobial ecosystem in which lactobacilli were exclusively detected in the group that displayed unsuccessful in vitro fertilization. Overall, these preliminary results revisit our knowledge of the genitourinary microbiota, and highlight a putative relationship between vaginal/endometrial microbiota and reproductive success

    Long-term quantitative hepatitis B surface antigen (HBsAg) trajectories in persons with and without HBsAg loss on tenofovir-containing antiretroviral therapy

    Get PDF
    OBJECTIVES Improving the understanding of the patterns of quantitative hepatitis B surface antigen (qHBsAg) trajectories associated with HBsAg loss is important in light of novel anti-hepatitis B virus agents being developed. We evaluated long-term qHBsAg trajectories in persons with HIV and HBV during tenofovir-containing antiretroviral therapy in the Swiss HIV Cohort Study. METHODS We included 29 participants with and 29 without HBsAg loss, defined as qHBsAg <0.05 IU/mL. We assessed qHBsAg decline during therapy in both groups and used agglomerative hierarchical clustering to identify different qHBsAg trajectory profiles in persons with HBsAg loss. RESULTS The median follow-up time was 11.9 years (IQR 8.4-14.1), and the median time to HBsAg loss was 48 months (IQR 12-96). Among participants with HBsAg loss, 79% had a qHBsAg decline ≥1 log10_{10} IU/mL 2 years after starting tenofovir. The trajectories in qHBsAg levels during tenofovir therapy were heterogeneous, characterized by five distinct profiles. Among participants without HBsAg loss, only 7% had a qHBsAg decline ≥1 log10_{10} IU/ml after 2 years. CONCLUSIONS Most persons with HIV who experienced HBsAg loss had an early decline in qHBsAg levels, with diverse trajectories during long-term tenofovir therapy. In persons without HBsAg loss, qHBsAg levels remained remarkably stable over time

    p53-paralog DNp73 oncogene is repressed by IFNα/STAT2 through the recruitment of the Ezh2 polycomb group transcriptional repressor

    Get PDF
    The DNp73 proteins act as trans-repressors of p53 and p73-dependent transcription and exert both anti-apoptotic activity and pro-proliferative activity. DNp73s are frequently up-regulated in a variety of human cancers, including human hepatocellular carcinomas (HCCs). Increased levels of DNp73 proteins confer to HCC cells resistance to apoptosis and, irrespective to p53 status, a chemoresistant phenotype. Here, we show that interferon (IFN)α down-regulates DNp73 expression in primary human hepatocytes (PHHs) and HCC cell lines. IFNα has been used as pro-apoptotic agent in the treatment of malignancies and there is increasing evidence of IFNα effectiveness in HCC treatment and prevention of recurrence. The precise mechanisms by which class I IFNs exert their anti-proliferative and anti-tumor activity remain unclear. IFNα binding to its receptor activates multiple intracellular signaling cascades regulating the transcription of numerous direct target genes through the recruitment of a complex comprising of STAT1, STAT2 and IFN regulatory factor (IRF)9 to their promoters. We found that, in response to IFNα, the P2p73 promoter undergoes substantial chromatin remodeling. Histone deacetylases (HDACs) replace histone acetyl transferases. STAT2 is recruited onto the endogenous P2p73 promoter together with the polycomb group protein Ezh2, leading to increased H3K27 methylation and transcriptional repression. The reduction of DNp73 levels by IFNα is paralleled by an increased susceptibility to IFNα-triggered apoptosis of Huh7 hepatoma cells. Our results show, for the first time, that IFN-stimulated gene factor 3 recruitment may serve both in activating and repressing gene expression and identify the down-regulation of DNp73 as an additional mechanism to counteract the chemoresistance of liver cancer cells

    Interrogating colorectal cancer metastasis to liver: a search for clinically viable compounds and mechanistic insights in colorectal cancer Patient Derived Organoids

    Get PDF
    Approximately 20-50% of patients presenting with localized colorectal cancer progress to stage IV metastatic disease (mCRC) following initial treatment and this is a major prognostic determinant. Here, we have interrogated a heterogeneous set of primary colorectal cancer (CRC), liver CRC metastases and adjacent liver tissue to identify molecular determinants of the colon to liver spreading. Screening Food and Drug Administration (FDA) approved drugs for their ability to interfere with an identified colon to liver metastasis signature may help filling an unmet therapeutic need

    Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection

    Get PDF
    Hepatitis C virus infection (HCV) represents a unique model to characterize, from early to late stages of infection, the T cell differentiation process leading to exhaustion of human CD8+ T cells. Here we show that in early HCV infection, exhaustion-committed virus-specific CD8+ T cells display a marked upregulation of transcription associated with impaired glycolytic and mitochondrial functions, that are linked to enhanced ataxia-telangiectasia mutated (ATM) and p53 signaling. After evolution to chronic infection, exhaustion of HCV-specific T cell responses is instead characterized by a broad gene downregulation associated with a wide metabolic and anti-viral function impairment, which can be rescued by histone methyltransferase inhibitors. These results have implications not only for treatment of HCV-positive patients not responding to last-generation antivirals, but also for other chronic pathologies associated with T cell dysfunction, including cancer

    Bisperoxovanadium, a phospho-tyrosine phosphatase inhibitor, reprograms myogenic cells to acquire a pluripotent, circulating phenotype

    Get PDF
    Satellite cells are the main source of myogenic progenitors in postnatal skeletal muscle, but their use in cell therapy for muscle disorders is limited because these cells cannot be delivered through circulation and they are rapidly exhausted in severe myopathies. The search for alternative donor cells is ongoing, but none of the candidates so far show all the features required for successful colonization and repair of diseased muscle. In this study, we show that bisperoxovanadium, a phospho-tyrosine phosphatase inhibitor, induces myogenic cells to acquire a gene expression profile and a differentiation potential consistent with the phenotype of a circulating precursors, while maintaining their myogenic potential. These effects are mediated, at least in part, by NF-kappa B activation through the Tyr42-I kappa B-alpha phosphorylation, as shown by the expression of the dominant negative mutant form of the p50 NF-kappa B subunit. Moreover, when bisperoxovanadium-treated cells are injected into the femoral artery of alpha-sarcoglican null dystrophic mice, they are able to circulate and to reach muscle tissue; importantly, they contribute to muscle regeneration, as shown by the expression of alpha-sarcoglican in some fibers. Our observations indicate that bisperoxovanadium, or similar compounds, may prove very valuable to obtain and to expand, from committed cells, multipotent cell populations suitable for gene-cell therapy applications and may help to understand the molecular basis of genome reprogramming and "stem-ness"
    corecore