890 research outputs found

    Monte Carlo algorithms for charged lattice gases

    Full text link
    We consider Monte Carlo algorithms for the simulation of charged lattice gases with purely local dynamics. We study the mobility of particles as a function of temperature and show that the poor mobility of particles at low temperatures is due to "trails" or "strings" left behind after particle motion. We introduce modified updates which substantially improve the efficiency of the algorithm in this regime.Comment: 12 pages, 14 figures, 1 table. v2: few changes, updated references, published version with larger figure

    Fast Fourier Transform Simulation Techniques for Coulomb Gases

    Full text link
    An improved approach to updating the electric field in simulations of Coulomb gases using the local lattice technique introduced by Maggs and Rossetto, is described and tested. Using the Fast Fourier Transform (FFT) an independent configuration of electric fields subject to Gauss' law constraint can be generated in a single update step. This FFT based method is shown to outperform previous approaches to updating the electric field in the simulation of a basic test problem in electrostatics of strongly correlated systems.Comment: 5 pages, 3 figure

    Boundary conditions in local electrostatics algorithms

    Full text link
    We study the simulation of charged systems in the presence of general boundary conditions in a local Monte Carlo algorithm based on a constrained electric field. We firstly show how to implement constant-potential, Dirichlet, boundary conditions by introducing extra Monte Carlo moves to the algorithm. Secondly, we show the interest of the algorithm for studying systems which require anisotropic electrostatic boundary conditions for simulating planar geometries such as membranes.Comment: 8 pages, 6 figures, accepted in JC

    Simulating nanoscale dielectric response

    Full text link
    We introduce a constrained energy functional to describe dielectric response. We demonstrate that the local functional is a generalization of the long ranged Marcus energy. Our re-formulation is used to implement a cluster Monte Carlo algorithm for the simulation of dielectric media. The algorithm avoids solving the Poisson equation and remains efficient in the presence of spatial heterogeneity, nonlinearity and scale dependent dielectric properties.Comment: 4 pages, 2 figures. Revtex

    Local Simulation Algorithms for Coulombic Interactions

    Full text link
    We consider dynamically constrained Monte-Carlo dynamics and show that this leads to the generation of long ranged effective interactions. This allows us to construct a local algorithm for the simulation of charged systems without ever having to evaluate pair potentials or solve the Poisson equation. We discuss a simple implementation of a charged lattice gas as well as more elaborate off-lattice versions of the algorithm. There are analogies between our formulation of electrostatics and the bosonic Hubbard model in the phase approximation. Cluster methods developed for this model further improve the efficiency of the electrostatics algorithm.Comment: Proceedings Statphys22 10 page

    Anisotropic elasticity in confocal studies of colloidal crystals

    Full text link
    We consider the theory of fluctuations of a colloidal solid observed in a confocal slice. For a cubic crystal we study the evolution of the projected elastic properties as a function of the anisotropy of the crystal using numerical methods based on the fast Fourier transform. In certain situations of high symmetry we find exact analytic results for the projected fluctuations.Comment: 6 pages, 7 figure

    Development and characterization of a single particle laser ablation mass spectrometer (SPLAM) for organic aerosol studies

    Get PDF
    A single particle instrument was developed for real-time analysis of organic aerosol. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM), samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized by using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL), sodium chloride (NaCl) and dioctylphtalate (DOP) particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL) and detection efficiency (DE) were determined using size-selected DOP particles. The DE ranges from 0.1 to 90% for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. During optical detection, particle scattered light from the two diode lasers, is detected by two photomultipliers and the detected signals are used to trigger UV excimer laser (λ = 248 nm) used for one-step laser desorption ionization (LDI) of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 × 10<sup>−15</sup> kg (∼4 × 10<sup>3</sup> molecules). DOP particles were also used to test the overall operation of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first application of the instrument. Single particle mass spectra were obtained with an effective hit rate of 8%. Some of these mass spectra were found to be very different from one particle to another possibly reflecting chemical differences within the investigated indene SOA particles. Our study shows that an exhaustive statistical analysis, over hundreds of particles, and adapted reference mass spectra are further needed to understand the chemical meaning of single particle mass spectra of chemically complex submicrometer-sized organic aerosols

    Activating mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans

    Get PDF
    Specific germline activating point mutations in the gene encoding the tyrosine kinase receptor FGFR3 (fibroblast growth factor receptor 3) result in autosomal dominant human skeletal dysplasias. The identification in multiple myeloma and in two epithelial cancers—bladder and cervical carcinomas—of somatic FGFR3 mutations identical to the germinal activating mutations found in skeletal dysplasias, together with functional studies, have suggested an oncogenic role for this receptor. Although acanthosis nigricans, a benign skin tumor, has been found in some syndromes associated with germinal activating mutations of FGFR3, the role of activated FGFR3 in the epidermis has never been investigated. Here, we targeted an activated receptor mutant (S249C FGFR3) to the basal cells of the epidermis of transgenic mice. Mice expressing the transgene developed benign epidermal tumors with no sign of malignancy. These skin lesions had features in common with acanthosis nigricans and other benign human skin tumors, including seborrheic keratosis, one of the most common benign epidermal tumors in humans. We therefore screened a series of 62 cases of seborrheic keratosis for FGFR3 mutations. A large proportion of these tumors (39%) harbored somatic activating FGFR3 mutations, identical to those associated with skeletal dysplasia syndromes and bladder and cervical neoplasms. Our findings directly implicate FGFR3 activation as a major cause of benign epidermal tumors in human

    Borel Determinacy: A Streamlined Proof

    Full text link
    First proved my Donald Martin in 1975, the result of Borel determinacy has been the subject of multiple revised proofs. Following Martin's book [1], we present a recent streamlined proof which implements ideas of Martin, Moschovakis, and Hurkens. We aim to give a concise presentation that makes this proof approachable to a wider audience
    corecore