5,587 research outputs found

    Twisted Conjugacy Classes in Lattices in Semisimple Lie Groups

    Full text link
    Given a group automorphism ϕ:Γ→Γ\phi:\Gamma\to \Gamma, one has an action of Γ\Gamma on itself by ϕ\phi-twisted conjugacy, namely, g.x=gxϕ(g−1)g.x=gx\phi(g^{-1}). The orbits of this action are called ϕ\phi-conjugacy classes. One says that Γ\Gamma has the R∞R_\infty-property if there are infinitely many ϕ\phi-conjugacy classes for every automorphism ϕ\phi of Γ\Gamma. In this paper we show that any irreducible lattice in a connected semi simple Lie group having finite centre and rank at least 2 has the R∞R_\infty-property.Comment: 6 page

    Anorectal malformations

    Get PDF
    Anorectal malformations comprise a wide spectrum of diseases, which can affect boys and girls, and involve the distal anus and rectum as well as the urinary and genital tracts. They occur in approximately 1 in 5000 live births. Defects range from the very minor and easily treated with an excellent functional prognosis, to those that are complex, difficult to manage, are often associated with other anomalies, and have a poor functional prognosis. The surgical approach to repairing these defects changed dramatically in 1980 with the introduction of the posterior sagittal approach, which allowed surgeons to view the anatomy of these defects clearly, to repair them under direct vision, and to learn about the complex anatomic arrangement of the junction of rectum and genitourinary tract. Better imaging techniques, and a better knowledge of the anatomy and physiology of the pelvic structures at birth have refined diagnosis and initial management, and the analysis of large series of patients allows better prediction of associated anomalies and functional prognosis. The main concerns for the surgeon in correcting these anomalies are bowel control, urinary control, and sexual function. With early diagnosis, management of associated anomalies and efficient meticulous surgical repair, patients have the best chance for a good functional outcome. Fecal and urinary incontinence can occur even with an excellent anatomic repair, due mainly to associated problems such as a poorly developed sacrum, deficient nerve supply, and spinal cord anomalies. For these patients, an effective bowel management program, including enema and dietary restrictions has been devised to improve their quality of life

    Storing entanglement of nuclear spins via Uhrig Dynamical Decoupling

    Full text link
    Stroboscopic spin flips have already been shown to prolong the coherence times of quantum systems under noisy environments. Uhrig's dynamical decoupling scheme provides an optimal sequence for a quantum system interacting with a dephasing bath. Several experimental demonstrations have already verified the efficiency of such dynamical decoupling schemes in preserving single qubit coherences. In this work we describe the experimental study of Uhrig's dynamical decoupling in preserving two-qubit entangled states using an ensemble of spin-1/2 nuclear pairs in solution state. We find that the performance of odd-order Uhrig sequences in preserving entanglement is superior to both even-order Uhrig sequences and periodic spin-flip sequences. We also find that there exists an optimal length of the Uhrig sequence at which the decoherence time gets boosted from a few seconds to about 30 seconds.Comment: 6 pages, 7 figure

    Arbitrary precision composite pulses for NMR quantum computing

    Full text link
    We discuss the implementation of arbitrary precision composite pulses developed using the methods of Brown et al. [Phys. Rev. A 70 (2004) 052318]. We give explicit results for pulse sequences designed to tackle both the simple case of pulse length errors and for the more complex case of off-resonance errors. The results are developed in the context of NMR quantum computation, but could be applied more widely.Comment: 16 pages elsart, no figures. In press at Journal of Magnetic resonanc

    High Order Coherent Control Sequences of Finite-Width Pulses

    Full text link
    The performance of sequences of designed pulses of finite length τ\tau is analyzed for a bath of spins and it is compared with that of sequences of ideal, instantaneous pulses. The degree of the design of the pulse strongly affects the performance of the sequences. Non-equidistant, adapted sequences of pulses, which equal instantaneous ones up to O(τ3)\mathcal{O}(\tau^3), outperform equidistant or concatenated sequences. Moreover, they do so at low energy cost which grows only logarithmically with the number of pulses, in contrast to standard pulses with linear growth.Comment: 6 pages, 5 figures, new figures, published versio

    Hyper-Ramsey Spectroscopy of Optical Clock Transitions

    Full text link
    We present non-standard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties of Ramsey fringes can be radically suppressed (by 2-4 orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case these frequency shifts can be suppressed considerably below a fractional level of 10^{-17}. Moreover, our approach opens the door for the high-precision optical clocks based on direct frequency comb spectroscopy.Comment: 5 pages, 4 figure

    Physiological models of body composition and human obesity

    Get PDF
    Correction to Levitt DG, Heymsfield SB, Pierson Jr RN, Shapses SA, Kral JG: Physiological models of body composition and human obesity. Nutrition & Metabolism 2007, 4:1

    Thermal Equilibrium as an Initial State for Quantum Computation by NMR

    Full text link
    We present a method of using a nuclear magnetic resonance computer to solve the Deutsch-Jozsa problem in which: (1) the number of molecules in the NMR sample is irrelevant to the number of qubits available to an NMR quantum computer, and (2) the initial state is chosen to be the state of thermal equilibrium, thereby avoiding the preparation of pseudopure states and the resulting exponential loss of signal as the number of qubits increases. The algorithm is described along with its experimental implementation using four active qubits. As expected, measured spectra demonstrate a clear distinction between constant and balanced functions.Comment: including 4 figure

    PKQuest: capillary permeability limitation and plasma protein binding – application to human inulin, dicloxacillin and ceftriaxone pharmacokinetics

    Get PDF
    BACKGROUND: It is generally assumed that the tissue exchange of antibiotics is flow limited (complete equilibration between the capillary and the tissue water). This assumption may not be valid if there is a large amount of plasma protein binding because the effective capillary permeability depends on the product of the intrinsic capillary permeability (PS) and the fraction of solute that is free in the blood (fw(B)). PKQuest, a new generic physiologically based pharmacokinetic software routine (PBPK), provides a novel approach to modeling capillary permeability in which the only adjustable parameter is the PS of muscle. METHODS: All the results were obtained by applying PKQuest to previously published human pharmacokinetic data. RESULTS: The PKQuest analysis suggests that the highly protein bound antibiotics dicloxacillin and ceftriaxone have a significant capillary permeability limitation. The human muscle capillary PS of inulin, dicloxacillin and ceftriaxone was 0.6, 13 and 6 ml/min/100 gm, respectively. The ceftriaxone protein binding is non-linear, saturating at high plasma concentrations. The experimental ceftriaxone data over a wide range of intravenous inputs (0.15 to 3 gms) was well described by PKQuest. PKQuest is the first PBPK that includes both permeability limitation and non-linear binding. CONCLUSIONS: Because of their high degree of plasma protein binding, dicloxacillin and ceftriaxone appear to have a diffusion limited exchange rate between the blood and tissue and are not flow limited as had been previously assumed. PKQuest and all the examples are freely available at
    • 

    corecore