475 research outputs found

    Body Fixed Frame, Rigid Gauge Rotations and Large N Random Fields in QCD

    Get PDF
    The "body fixed frame" with respect to local gauge transformations is introduced. Rigid gauge "rotations" in QCD and their \Sch equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a nonvanishing static colormagnetic field in the "body fixed" frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic--like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit.Comment: 29 pages LATEX, Weizmann Institute preprint WIS-93/40/Apr -P

    Scaling Properties of the Giant Dipole Resonance Width in Hot Rotating nuclei

    Get PDF
    We study the systematics of the giant dipole resonance width Γ\Gamma in hot rotating nuclei as a function of temperature TT, spin JJ and mass AA. We compare available experimental results with theoretical calculations that include thermal shape fluctuations in nuclei ranging from A=45 to A=208. Using the appropriate scaled variables, we find a simple phenomenological function Γ(A,T,J)\Gamma(A,T,J) which approximates the global behavior of the giant dipole resonance width in the liquid drop model. We reanalyze recent experimental and theoretical results for the resonance width in Sn isotopes and 208^{208}Pb.Comment: LaTeX, 4 pages with 4 figures (to appear in Phys. Rev. Lett.

    Functional determinants for general Sturm-Liouville problems

    Full text link
    Simple and analytically tractable expressions for functional determinants are known to exist for many cases of interest. We extend the range of situations for which these hold to cover systems of self-adjoint operators of the Sturm-Liouville type with arbitrary linear boundary conditions. The results hold whether or not the operators have negative eigenvalues. The physically important case of functional determinants of operators with a zero mode, but where that mode has been extracted, is studied in detail for the same range of situations as when no zero mode exists. The method of proof uses the properties of generalised zeta-functions. The general form of the final results are the same for the entire range of problems considered.Comment: 28 pages, LaTe

    Interaction and Localization of One-electron Orbitals in an Organic Molecule: Fictitious Parameter Analysis for Multi-physics Simulations

    Full text link
    We present a new methodology to analyze complicated multi-physics simulations by introducing a fictitious parameter. Using the method, we study quantum mechanical aspects of an organic molecule in water. The simulation is variationally constructed from the ab initio molecular orbital method and the classical statistical mechanics with the fictitious parameter representing the coupling strength between solute and solvent. We obtain a number of one-electron orbital energies of the solute molecule derived from the Hartree-Fock approximation, and eigenvalue-statistical analysis developed in the study of nonintegrable systems is applied to them. Based on the results, we analyze localization properties of the electronic wavefunctions under the influence of the solvent.Comment: 4 pages, 5 figures, the revised version will appear in J. Phys. Soc. Jpn. Vol.76 (No.1

    Adaptive response and enlargement of dynamic range

    Full text link
    Many membrane channels and receptors exhibit adaptive, or desensitized, response to a strong sustained input stimulus, often supported by protein activity-dependent inactivation. Adaptive response is thought to be related to various cellular functions such as homeostasis and enlargement of dynamic range by background compensation. Here we study the quantitative relation between adaptive response and background compensation within a modeling framework. We show that any particular type of adaptive response is neither sufficient nor necessary for adaptive enlargement of dynamic range. In particular a precise adaptive response, where system activity is maintained at a constant level at steady state, does not ensure a large dynamic range neither in input signal nor in system output. A general mechanism for input dynamic range enlargement can come about from the activity-dependent modulation of protein responsiveness by multiple biochemical modification, regardless of the type of adaptive response it induces. Therefore hierarchical biochemical processes such as methylation and phosphorylation are natural candidates to induce this property in signaling systems.Comment: Corrected typos, minor text revision

    Semiclassical Approximations in Phase Space with Coherent States

    Get PDF
    We present a complete derivation of the semiclassical limit of the coherent state propagator in one dimension, starting from path integrals in phase space. We show that the arbitrariness in the path integral representation, which follows from the overcompleteness of the coherent states, results in many different semiclassical limits. We explicitly derive two possible semiclassical formulae for the propagator, we suggest a third one, and we discuss their relationships. We also derive an initial value representation for the semiclassical propagator, based on an initial gaussian wavepacket. It turns out to be related to, but different from, Heller's thawed gaussian approximation. It is very different from the Herman--Kluk formula, which is not a correct semiclassical limit. We point out errors in two derivations of the latter. Finally we show how the semiclassical coherent state propagators lead to WKB-type quantization rules and to approximations for the Husimi distributions of stationary states.Comment: 80 pages, 4 figure

    Crystal Structure of an LSD-Bound Human Serotonin Receptor

    Get PDF
    SummaryThe prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors.PaperCli

    Caloric curves and critical behavior in nuclei

    Get PDF
    Data from a number of different experimental measurements have been used to construct caloric curves for five different regions of nuclear mass. These curves are qualitatively similar and exhibit plateaus at the higher excitation energies. The limiting temperatures represented by the plateaus decrease with increasing nuclear mass and are in very good agreement with results of recent calculations employing either a chiral symmetry model or the Gogny interaction. This agreement strongly favors a soft equation of state. Evidence is presented that critical excitation energies and critical temperatures for nuclei can be determined over a large mass range when the mass variations inherent in many caloric curve measurements are taken into account.Comment: In response to referees comments we have improved the discussion of the figures and added a new figure showing the relationship between the effective level density and the excitation energy. The discussion has been reordered and comments are made on recent data which support the hypothesis of a mass dependence of caloric curve
    • …
    corecore