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SUMMARY

The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal 

structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals 

conformational rearrangements to accommodate LSD, providing a structural explanation for the 

conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally 

slowly from both 5-HT2BR and 5-HT2AR -- a major target for its psychoactivity. Molecular 

dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” 

formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted 

to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively 

dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding 

mode of LSD, illuminates key features of its kinetics, stereochemistry, and signaling, and provides 

a molecular explanation for LSD’s actions at human serotonin receptors.
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INTRODUCTION

Lysergic acid diethylamide (LSD) is not only the prototypical human hallucinogen but also 

one of the most potent known psychoactive drugs. LSD was synthesized in 1938 by Albert 

Hofmann, who in 1943 accidently discovered its potent hallucinogenic properties (Hofmann, 

1979). LSD alters human perception and mood (Nichols, 2016) and users report profound 

psychological experiences, or “trips”, lasting 6–15 hrs (Passie et al., 2008). LSD gained 

popularity as a legal recreational drug in the early 1960’s, although it was soon classified as 
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a Schedule 1 controlled substance. A renewed scientific interest in LSD not only provides 

support for its potential application in disorders such as substance abuse (Bogenschutz and 

Johnson, 2016), cluster headaches (Sewell et al., 2006), and anxiety associated with life-

threatening conditions (Gasser et al., 2015), but has also illustrated LSD’s potential utility in 

studying aspects of human psychopathology and consciousness (Carhart-Harris et al., 2016). 

LSD has a complex pharmacology, exhibiting potent interactions with essentially all 

aminergic G protein coupled receptors (GPCRs) (Kroeze et al., 2015; Roth et al., 2002) -- 

including all 13 human serotonergic GPCRs (Roth et al., 2002; Wacker et al., 2013; Wang et 

al., 2013). LSD appears to manifest its psychoactive properties primarily through 5-HT2-

family serotonin receptors, in particular at the 5-HT2A receptor (5-HT2AR) (Titeler et al., 

1988), which is enriched in cortical layer V pyramidal neurons (Jakab and Goldman-Rakic, 

1998). LSD is a semi-synthetic member of a larger class of ergolines that have long been 

recognized as therapeutics for many conditions, including migraine headaches, post-partum 

hemorrhage, and Parkinson’s disease (Berger et al., 2009).

It is well known that LSD activates canonical G protein mediated signaling at many GPCRs, 

but it has only recently been appreciated that LSD also potently activates the non-canonical 

β-arrestin pathway at most biogenic amine GPCRs (Kroeze et al., 2015), including all but 

one serotonin receptor (Wacker et al., 2013; Wang et al., 2013). Whereas most endogenous 

agonists, such as serotonin, activate both G protein and β-arrestin pathways, some 

compounds can stabilize distinct receptor conformations, thereby preferentially activating 

select signal transduction pathways. This phenomenon has been termed “functional 

selectivity” or “biased agonism” (Urban et al., 2007; Violin and Lefkowitz, 2007) and 

represents a promising avenue of drug development, as specific signaling pathways have 

been linked to both the beneficial (Allen et al., 2011) and deleterious effects (Manglik et al., 

2016) of drugs. Although the molecular details responsible for biased signaling are 

unknown, recent crystallographic studies of G protein bound receptors (Carpenter et al., 

2016; Rasmussen et al., 2011b), β-arrestin bound Rhodopsin (Kang et al., 2015), the β-

arrestin biased state of 5-HT2BR (Wacker et al., 2013), as well as structure-inspired 

functional studies (Wootten et al., 2016) are beginning to clarify the essential structural 

features responsible for such signaling. Given the historical and continuing impact of LSD 

as a recreational drug, we wished to investigate the molecular mechanisms responsible for 

LSD’s activity at serotonin receptors. We thus set out to (a) elucidate the structural 

characteristics of LSD-bound 5-HT2BR, an excellent model system for 5-HT2AR, (b) 

provide a detailed functional characterization of LSD’s biased signaling profile, and (c) 

using the 5-HT2BR structure as a template, clarify the structural features for its activity at the 

homologous 5-HT2AR, the major target for LSD’s psychedelic effects.

RESULTS

Insights from 5-HT2BR/LSD structure

To obtain structural insights into LSD’s actions at human serotonin receptors we crystallized 

an engineered 5-HT2BR construct bound to LSD by extensively modifying our previous 

approach (Wacker et al., 2013). We eventually obtained crystals and solved the x-ray 

structure of the 5-HT2BR/LSD complex to a resolution of 2.9 Å (Table 1, Figure 1, Figure 
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S1). LSD is bound in the orthosteric binding site while also engaging the previously 

described extended binding site of the receptor (Figure 1A–C) (Wang et al., 2013). As an 

ergoline, LSD’s tryptamine moiety, which resembles that of 5-HT, is embedded in a 

tetracyclic scaffold (Figure 1D). Ergolines exhibit diverse amide modifications, such as 

LSD’s diethylamide that is essential for its optimal potency in vivo(Nichols et al., 1996), or 

the peptide moiety of ergotamine (ERG) (Figure 1D). LSD is anchored to 5-HT2BR by a 

conserved salt bridge between D1353.32 in helix III and the basic nitrogen of the ergoline 

system (Figure 1B–D), an interaction that has been observed consistently in aminergic 

receptor structures (Chien et al., 2010; Shimamura et al., 2011; Wacker et al., 2010; Wacker 

et al., 2013; Wang et al., 2013). The ergoline system of LSD occupies the orthosteric pocket, 

which forms a narrow cleft lined mainly by hydrophobic sidechains from residues in helices 

III, V, VI, and VII; such a cleft is common to most biogenic amine receptors. LSD’s ergoline 

ring system forms edge-to-face aromatic contacts with conserved phenylalanines (F3406.51, 

F3416.52) in helix VI, as previously anticipated for its complex with 5-HT2AR (Choudhary et 

al., 1995; Perez-Aguilar et al., 2014), and hydrogen bonds with the backbone of G2215.42 in 

helix V. LSD’s diethylamide group binds in a crevice between helices II, III, and VII, where 

one ethyl group forms non-polar contacts with L1323.29 and W1313.28, while the other ethyl 

group extends towards L3627.35 -- residues previously shown to be part of an extended 

binding pocket in 5-HT1B and 5-HT2B receptors (Wacker et al., 2013; Wang et al., 2013) 

(Figure 1C).

LSD’s distinct binding pose

Although ergolines are structurally and chemically related, in vivo activities of ergolines are 

diverse, ranging from the anti-migraine effects of ERG to the hallucinogenic actions of LSD. 

These differences can be attributed in part to differential blood-brain barrier permeability – 

ERG, for example, does not cross the blood-brain barrier and is thus not hallucinogenic 

(Verhoeff et al., 1993). It is also known, however, that ergolines differ greatly in their 

receptor pharmacology and patterns of signaling (Huang et al., 2009). Ergolines are also 

predicted to bind to serotonin receptors differently based on modeling and site-directed 

mutagenesis studies (Choudhary et al., 1995). To investigate this possibility, we compared 

the conformations of 5-HT2BR bound to either ERG or LSD (Figure 2, Figure S2). The 5-

HT2BR/LSD structure shows hallmarks of an apparently arrestin-biased state similar to those 

previously described for 5-HT2BR/ERG, which include a partially activated state of the PIF 

motif, and larger activation-related changes in helix VII and the NPxxY motif than in helix 

V, VI, and the DRY motif (Wacker et al., 2013)(Figure S2). These similarities likely reflect 

the fact that at 5-HT2BR, both ERG and LSD preferentially engage β-arrestin-mediated over 

Gq-mediated signal transduction (Wacker et al., 2013). Although LSD-bound 5-HT2BR 

adopts an overall conformation reminiscent of that seen in the ERG-bound 5-HT2BR 

structure, the shared ergoline ring systems of LSD and ERG adopt distinct configurations 

with respect to the orthosteric binding pocket of the 5-HT2BR (Figure 2A).

Compared to ERG, the ergoline moiety of LSD is located higher in the orthosteric pocket, 

closer to EL2 and the extracellular space, adopting a shallow binding mode. ERG is located 

deeper in the pocket with its indole nitrogen hydrogen bonding to T1403.37 in helix III, at the 

bottom of the pocket, further embedded in the intra-membrane region. In contrast, the indole 
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nitrogen of LSD does not interact with T1403.37 in helix III but instead hydrogen bonds with 

the backbone oxygen of G2215.42 in helix V.

We also observe conformational changes in the sidechains of several important orthosteric 

pocket residues when comparing the structures of the LSD- and ERG-bound 5-HT2BR: 

T1142.64, E3637.36, and M2185.39 all change their rotamer states between the two structures 

(Figure 2A). These changes in rotamer states likely reflect distinct ligand-receptor 

interactions and an unexpected plasticity of the receptor for these structurally related 

compounds. For instance, in the 5-HT2BR/ERG complex, the phenyl moiety of ERG appears 

to “push” down on M2185.39, wedging the M2185.39 sidechain between the peptide and 

ergoline moiety of ERG (Figure 2A) and thus contributing to the deeper seating of the 

ergoline moiety of ERG in the pocket versus that of LSD. In the 5-HT2BR/LSD complex, by 

contrast, the diethylamide ergoline substituent does not interact with M2185.39. As a result 

the M2185.39 sidechain flips up, allowing more space for LSD to adopt a shallower binding 

mode. We also examined these differential binding modes by molecular dynamics (MD) 

simulations, which provided additional support for the hypothesis that the binding of LSD 

preserves the unliganded conformation of M2185.39, whereas binding of ERG distorts it. In 

MD simulations initiated from structures of either the ERG-bound or LSD-bound 5-HT2BR, 

but with the ligand removed, the M2185.39 sidechain consistently adopted an upward 

conformation matching that of the LSD-bound structure (Figure S3A and Table S1).

The smaller amide substituent of LSD also accounts for an overall contraction of the 

extended binding site relative to the ERG-bound structure (Figure 2B). Specifically, we 

observe an inward movement of helices II (1.6 Å), VII (2.1 Å), and parts of EL2 (1.0 Å) and 

EL3 (1.8 Å) towards the seven transmembrane core, and a relocation of helix VI (1.0 Å) 

away from helix VII towards helix V and the membrane, which is likely a result of the 

inward movement of helix VII (Figure 2B). Indeed, when we calculated the size of the 

binding pockets in the 5-HT2BR/LSD and 5-HT2BR/ERG complexes with CASTp (Dundas 

et al., 2006), we saw an overall reduction of the binding pocket volume from 2898.7 Å3 to 

2068.4 Å3 – a 28.6% decrease. Together, these data illustrate how distinct, but similar, 

compounds—in this case LSD and ERG-- differentially and unexpectedly shape the ligand 

binding surface of a GPCR (i.e. 5-HT2BR; Figure 2C and 2D, Figure S3C and S3D). We also 

observed that the amide substituents of LSD and ERG are differentially arranged with 

respect to the ionic bond with D1353.32 (Figure 2A, inset).

These observed rotamer changes and helical movements, as well as the differential 

positioning of the ergoline moiety, represent substantial structural changes that could reflect 

different receptor conformational and dynamic states. That is particularly evident when 

similar comparisons are made to the activation-related changes in the ligand-binding pocket 

of the β2 adrenergic receptor (β2AR); for β2AR, a comparison of the antagonist-bound 

inactive state to the agonist-bound active state shows conformational changes of magnitude 

similar to those observed in the ligand-binding pocket of the ERG-vs LSD-bound 5-HT2BR 

structures (Figure S3E–G). To quantify this, we calculated a ligand-binding pocket root 

mean square deviation (RMSD) of 0.99 Å for the ERG-bound vs LSD-bound 5-HT2BR 

structures and an RMSD of 0.85 Å for the inactive- vs active-state structures of β2AR
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LSD diethylamide stereoselectivity and function

These structural rearrangements suggested to us that LSD’s positioning in the binding 

pocket—mediated by the amide substituent--might be important for its signaling. The 

conformation of LSD in the 5-HT2BR-bound crystal structure differs from the conformation 

in a receptor-free small-molecule crystal structure (Baker et al., 1972) by a ∼60° rotation of 

the diethylamide moiety around the bond connecting it to the ergoline ring system (Figure 

3A). Thus, although the two ethyl groups adopt a trans conformation in both crystal 

structures, their spatial positions relative to the ergoline ring system differ substantially. We 

initially explored the conformations of the ethyl groups computationally by MD. In MD 

simulations of the LSD-bound 5-HT2BR, LSD maintained its receptor-bound 

crystallographic conformation, apart from fluctuations in the terminal methyl groups; we 

particularly note that LSD never visited the conformation it adopts in the small-molecule 

crystal structure (Figure 3B).

These findings suggested to us that the different conformations of the diethylamide moiety 

also might differentially stabilize receptor conformations and so be critical for receptor 

function. Accordingly, we employed sterically constrained LSD analogues (Figure 3C)

(Nichols et al., 2002) to investigate the functional significance of different diethyl 

conformations. (S,S)-Azetidide (SSAz) and (R,R)-Azetidide (RRAz) are LSD analogues 

with constrained diethylamide conformations (Figure 3C). The SSAz conformation more 

closely resembles the diethyl conformation observed in the 5-HT2BR bound LSD 

conformation, whereas RRAz is more similar to the diethyl conformation observed in the 

small molecule LSD crystal structure. This observation predicts that SSAz would more 

faithfully replicate the functional properties of LSD. To test this hypothesis, we performed 

functional assays at 5-HT2BR and 5-HT2AR, the presumed target of LSD’s hallucinogenic 

actions. We found that although SSAz and LSD have nearly identical efficacies and 

potencies, RRAz and the unsubstituted ergoline lysergamide (LSA) have much reduced 

potencies for β-arrestin2 recruitment (Figure 3D). We also quantified Gq-mediated calcium 

flux, and found the differences to be smaller (Figure 3E). The observation that the SSAz 

diethyl conformation matches LSD’s functional preference is consistent with the particular 

conformation observed in the LSD-bound 5-HT2BR crystal structure.

To investigate further the role of these ergoline substituents, we built a homology model of 

5-HT2AR based on our 5-HT2BR/LSD crystal structure and docked LSD, SSAz, RRAz, and 

LSA into the binding pockets of both the 5-HT2BR and 5-HT2AR models (Figure S4, Table 

S2). The docked poses illustrate that LSD’s crystallographic 5-HT2BR binding mode is 

recapitulated in the 5-HT2AR model, and show that the rigidified substituent of SSAz adopts 

an almost identical orientation to that of LSD in its receptor bound forms (Figure S4A, S4B, 

S4E, and S4F). In contrast, the amide substituent of RRAz adopts a different orientation, 

with one of the ethyl groups pointing into solvent and not engaging in hydrophobic contacts 

with the receptor (Figure S4C and S4G), similar to LSA (Figure S4D and S4H). In 

combination, the structural and functional data together with MD simulations and docking 

studies support the hypothesis proposed some years ago (Nichols et al., 2002; Nichols et al., 

1996) that this conformation of the diethylamide moiety is key to LSD’s potency and 

activity at 5-HT receptors.
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A structural motif associated with LSD residence time and arrestin translocation

Early radioligand binding studies using crude brain membrane preparations and [3H]-LSD 

showed that LSD dissociated slowly from what were then ill-defined molecular targets 

(Bennett and Snyder, 1975). Here, we directly measured the off-rate of [3H]-LSD at 5-

HT2BR to obtain molecular insight into LSD’s binding kinetics, as ligand residence times 

can profoundly modulate drug actions (Copeland et al., 2006). We found that LSD has a 

dissociation t1/2 >5 hr at the 5-HT2BR at 25°C (Figure S5A); even at 37°C LSD exhibits a 

very slow dissociation rate with a residence time of ∼46 min (koff = 0.022 ± 0.004 min−1; 

Figure 4A). Similarly, slow rates of [3H]-LSD dissociation for 5-HT2BR were seen with the 

crystallization construct expressed in Sf9 cells (Figure S5D) and in cells in which Gq and 

G11 proteins, or β–arrestins 1 and 2 were deleted (Figure S5E).

We noticed that in the LSD-bound 5-HT2BR structure, residues 207–214 of EL2 form a “lid” 

over LSD (Figure 4B), likely hindering LSD’s escape from the binding site and thus 

contributing to its slow dissociation rate. Indeed, a comparison of the 5-HT2BR/LSD and 5-

HT2BR/ERG structures (Figure S3C and S3D) disclosed 5-HT2BR/ERG to be more open. To 

test the hypothesis of a “lid” in the LSD structure responsible for its slow dissociation, we 

first performed MD simulations of both LSD-bound and unliganded 5-HT2BR. We observed 

that the lid occasionally, although rarely, adopted a conformation in which the binding 

pocket was more exposed to the extracellular solvent (Figure 4B). We hypothesize that 

fluctuations in the position of the lid may be necessary for LSD to exit or enter the binding 

pocket, although the time scales of our simulations are far shorter than those on which LSD 

dissociates.

In the LSD-bound crystal structure, the side chain of the lid residue L209EL2 forms 

extensive hydrophobic contacts with both LSD and surrounding residues in TMs III, IV, and 

V (Figure 4C). When the lid moved aside to expose the binding pocket in simulation, several 

of these contacts broke. We thus hypothesized that L209EL2 acts as a latch, reducing the 

mobility of the lid and constraining LSD’s access to and egress from the binding pocket. 

Indeed, simulations of a receptor in which this latch was removed by mutating L209EL2 to 

alanine showed much increased lid fluctuations, both with and without LSD present (Figure 

4D–F and Figure S3B). This model was further tested by creating the L209AEL2 mutant, 

which decreased LSD residence time by 10-fold, from 44 min to 4.3 min, at 37°C (Figure 

4A; Table 2). The L209AEL2 mutation also accelerates LSD’s apparent on-rate (Figure S5B; 

Table 2) without substantially altering [3H]-LSD’s steady-state binding affinity (Figure 

S5C). This effect was not seen with ERG as its binding kinetics are minimally affected by 

the L209AEL2 mutation (Figure S5F and S5G). This is perhaps due to the more extensive 

contacts between ERG and the receptor compared to LSD (Figure 2A), which are possibly 

responsible for the different EL2 conformations in the 5-HT2BR/LSD and 5-HT2BR/ERG 

structures (Figure 2B).

Although many studies demonstrate that drug residence time can correlate with drug efficacy 

in vivo (Copeland et al., 2006), it is possible that off-rate or residence time might also 

modulate kinetically-sensitive patterns of intracellular signaling. To investigate this 

possibility, we assessed the functional consequence of LSD’s long residence time on 5-

HT2BR signaling by characterizing apparent signaling profiles at the wild-type and 
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L209AEL2 receptors. Comparing Gq-mediated calcium flux and β-arrestin2 recruitment, we 

find that the L209AEL2 mutation strongly and selectively reduces LSD’s β-arrestin2 

recruitment potency and efficacy without affecting Gq-mediated calcium flux or PI 

hydrolysis (Figure 4G, Table S3).

We wondered whether this model of LSD’s actions at a molecular level held true for the 5-

HT2AR, which represents LSD’s principal molecular target in vivo. As shown in Figure 5A, 

we observe a configuration of LSD docked in the binding pocket of the 5-HT2AR model 

similar to that observed in the 5-HT2BR/LSD crystal structure, with the conformation of EL2 

and L229EL2 forming contacts with LSD similar to L209EL2 in the 5-HT2BR/LSD crystal 

structure. Remarkably, [3H-]LSD dissociation experiments reveal an even slower off-rate 

(koff = 0.005 ± 0.001 min−1) and thus longer residence time of LSD at 5-HT2AR compared 

to 5-HT2BR. Importantly, the L229AEL2 mutation substantially decreases LSD’s residence 

time from 221 min (5-HT2AR wild-type) to 50 min (L229AEL2) (Figure 5B; Table S4). 

Similar to the findings obtained for 5-HT2BR, LSD also exhibits selectively reduced β-

arrestin2 recruitment potency and efficacy at the 5-HT2AR EL2 mutant L229AEL2 without 

altered Gq-mediated calcium flux (Figure 5C, Table S4).

To investigate the hypothesis that LSD’s slow binding kinetics are important for its signaling 

and the kinetics of signaling, we next modified a bioluminescence resonance energy transfer 

(BRET) assay (Hamdan et al., 2005; Masri et al., 2008) for kinetic measurements of β-

arrestin2 recruitment at 5-HT2AR and 5-HT2BR. Consistent with our hypothesis, both LSD-

mediated β-arrestin2 recruitment and Gq-mediated signaling increase with prolonged 

compound incubation (Figure 5D, 5E, S5F–I), an effect correlated with LSD’s prolonged 

residence time at both receptors. We also tested LSD-mediated β-arrestin2 recruitment at the 

5-HT2AR L229AEL2 and 5-HT2BR L209AEL2 mutants, which reduce LSD’s residence time. 

Remarkably, LSD exhibits weak β-arrestin2 recruitment potency at both EL2 mutants and 

no time-dependent increase in LSD’s potency is observed (Figure 5D and 5E). Although a 

similar time-dependence of potency and efficacy was seen for Gq-mediated IP accumulation, 

we observed no substantial effect of the EL2 mutation on the time-dependent augmentation 

of Gq signaling (Fig S5F–I).

To obtain a global view of the role of kinetics for LSD’s actions at 5-HT2AR and 5-HT2BR

—particularly with regard to L229EL2 and L209EL2, respectively—we provide a heat-map 

plot of transduction coefficients [i.e., log (t/KA); (Kenakin et al., 2012)] of the time-course 

data for Gq (IP accumulation) and arrestin translocation (Fig 5F, Table S5). As can be seen 

for Gq-mediated IP accumulation and β-arrestin2 recruitment, time-dependent augmentation 

of the transduction coefficient is evident. Remarkably, the L209AEL2 and L229AEL2 

mutations selectively abrogate the time-dependency for β-arrestin2 translocation.

DISCUSSION

A molecular understanding of the structural basis of psychoactive drug action has long been 

elusive. LSD, with its profound activity on human perception and awareness, is one of the 

most prominent psychoactive drugs. Whereas it has long been thought that LSD and many 

other hallucinogens act at serotonin receptors (Shaw and Woolley, 1956; Vane, 1957; 
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Woolley and Shaw, 1954), understanding LSD’s actions at a molecular level has remained 

clouded, notwithstanding important computational (Perez-Aguilar et al., 2014), genetic, 

behavioral, and pharmacological studies (Gonzalez-Maeso et al., 2007). The structure of 

LSD bound to one of its molecular targets, and the signaling and simulation studies it 

enables, begins to address longstanding questions about the relation of LSD’s chemical 

structure to its activity, kinetics, and signaling. Two noteworthy observations stand out. First, 

the key amide side chain of LSD—the group that distinguishes it from the far less 

hallucinogenic lysergamide (LSA)—adopts a constrained conformation in the binding site 

that cannot exchange readily with alternative conformational states. This conformation, and 

by extension the contacts made, is crucial for LSD’s actions, and close analogs that cannot 

adopt it are much less active in vivo. Second, this conformation apparently contributes to 

LSD’s relatively potent ability to promote b-arrestin translocation.

The structure of the 5-HT2BR/LSD complex reveals that the amide substituents, such as 

LSD’s diethylamide, largely determine the positioning of the ergoline system within the 

orthosteric pocket. This new structure explains the previously enigmatic requirement of LSD 

and related lysergamides for a specific conformation of the diethylamide substituents for 

activity. The observation that, for instance, the probe molecule SSAz is active whereas its 

enantiomer RRAz is less active (Nichols et al., 2002) was difficult to reconcile with the prior 

small molecule crystal structure of LSD alone (Baker et al., 1972), in which the 

diethylamide adopts a different conformation. As the receptor-LSD complex structure 

shows, the diethylamide of receptor-bound LSD adopts a conformation consistent with the 

observed stereochemical preference for SSAz over RRAz at both the 5-HT2A and 5-HT2B 

receptors.

The diethylamide positioning and interactions could also contribute to LSD’s long residence 

time at 5-HT2BR and 5-HT2AR -- its presumed major molecular target. MD simulations 

suggest the slow kinetics of LSD are due, at least in part, to a lid formed by EL2 covering 

the binding pocket. Compellingly, accelerating LSD’s binding kinetics by making a 

substitution to a key residue identified structurally (L209EL2), selectively attenuates the 

time-dependent augmentation of β-arrestin2 recruitment while minimally affect Gq 

signaling. We note in this regard that, although structural studies cannot provide definitive 

insights into drug actions in vivo, it is conceivable that LSD’s long residence time via EL2 

interactions could contribute to LSD’s long duration of action (Schmid et al., 2015), despite 

its apparent rapid clearance from the body [t1/2 = 3.6 hrs (Dolder et al., 2015)].

Crystal structures and molecular simulations can never fully explain CNS drug efficacy, 

which for LSD requires integrative action over complex neural networks, leading to highly 

distinctive cognitive effects. Our observations nevertheless provide the first structure-

informed insights into the molecular actions for any hallucinogen. Our findings explain the 

role of LSD functional groups whose importance in vivo has long been recognized, but 

whose mechanism has been opaque. The structure-informed insights also link these 

particular interactions to the unusual signaling kinetics of LSD—particularly as it relates to 

β-arrestin translocation, effects that could be crucial for its hallucinogenic activity in vivo 
(Wetsel, Rodriguez and Roth, unpublished observations). Finally, this structure may 

template future structure-based efforts to discover new chemotypes at 5-HT2A and 5-HT2B 
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receptors. Such molecules could help disentangle hallucinogenic effects from other 

intriguing activities of 5HT2A agonists, something that has heretofore been impossible but 

that a structure-based approach, with its ability to identify novel chemotypes, now allows 

(Huang et al., 2015; Manglik et al., 2016).

STAR*METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to, and will be fulfilled by 

the Lead Contact Bryan L. Roth (bryan_roth@med.unc.edu)

METHOD DETAILS

Generation of 5-HT2BR receptor crystallization construct—Crystallization of the 

5-HT2BR/LSD complex was done based on a previously engineered receptor construct that 

was edited by Quickchange PCR. Using site-directed mutagenesis we added the ICL3 

residue V313 to a previously published construct (Liu et al., 2013) that had been synthesized 

by DNA2.0. The final construct a) lacks N-terminal residues 1–35, b) lacks C-terminal 

residues 406–481, c) contains a thermostabilizing M144W3.41 mutation (Roth et al., 2008), 

and d) contains A1-L106 of the thermostabilized apocytochrome b562 RIL (BRIL) from E. 
coli (M7W, H102I, R106L) in place of receptor residues Y249-S312 of ICL3 (Chun et al., 

2012). Further modifications are a haemagglutinin (HA) signal sequence followed by a 

FLAG tag at the N terminus, and a PreScission protease site followed by a 10× His tag at the 

C-terminus to enable purification by immobilized metal affinity chromatography.

Expression and purification of 5-HT2BR—High-titer recombinant baculovirus (>109 

viral particles per ml) was generated using the Bac-to-Bac Baculovirus Expression System 

(Invitrogen). Recombinant baculovirus was obtained by transfecting ∼5 µg of recombinant 

bacmid into 5×105 settled Spodoptera frugiperda (Sf9) cells (Expression Systems) in a 24 

well plate (Corning) using 3 µl Cellfectin II Reagent (Invitrogen). After 5–12 hrs, media was 

exchanged for 1 ml Sf-900 II SFM media (Invitrogen) and incubated for 4–6 days at 27 °C. 

P0 viral stock with ∼109 virus particles per ml was harvested as the supernatant and used to 

generate high-titer baculovirus stock by infection of 40–1000 mls of Sf9 cells and incubation 

for several days. Viral titers were determined by flow-cytometric analysis of cells stained 

with gp64-PE antibody (Expression Systems)(Hanson et al., 2007). Expression of 5-HT2BR 

was carried out by infection of Sf9 cells at a cell density of 2–3 × 106 cells/ml in ESF921 

media (Expression Systems) with P1 or P2 virus at a MOI (multiplicity of infection) of 3–5. 

Cells were harvested by centrifugation at 48 h post infection, washed in PBS, and stored at 

−80 °C until use. Cells were disrupted by thawing frozen cell pellets in a hypotonic buffer 

containing 10 mM HEPES, pH 7.5, 10 mM MgCl2, 20 mM KCl and protease inhibitors (500 

µM AEBSF, 1 µM E-64, 1 µM Leupeptin, 150 nM Aprotinin). Membranes were purified by 

repeated centrifugation in a high osmolarity buffer containing 1.0 M NaCl, 10 mM HEPES, 

pH 7.5, 10 mM MgCl2, 20 mM KCl, to remove soluble and membrane associated proteins. 

Purified membranes were directly flash-frozen in liquid nitrogen and stored at −80 °C.
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Purified membranes were resuspended in buffer containing 10 mM HEPES, pH 7.5, 10 mM 

MgCl2, 20 mM KCl, 150 mM NaCl, 50 µM LSD (synthesized in house), and protease 

inhibitors, and incubated at room temperature for 1 h. After 30 min incubation in the 

presence of 2 mg/ml iodoacetamide (Sigma), membranes were solubilized in 10 mM 

HEPES, pH 7.5, 150 mM NaCl, 1% (w/v) n-dodecyl-β-D-maltopyranoside (DDM, 

Anatrace), 0.2% (w/v) cholesteryl hemisuccinate (CHS, Sigma), 25 µM LSD, and protease 

inhibitors for 2 h at 4 °C. Unsolubilized material was removed by centrifugation at 150,000 

× g for 30 min, and 15 mM imidazole was added to the supernatant. Proteins were bound to 

TALON IMAC resin (Clontech) overnight at 4 °C using approximately 750 µl resin for 

protein purified from 1 L of cells. The resin was then washed with 10 column volumes (cv) 

of Wash Buffer I (50 mM HEPES, pH 7.5, 800 mM NaCl, 0.1% (w/v) DDM, 0.02% (w/v) 

CHS, 20 mM imidazole, 10% (v/v) glycerol, and 20 µM LSD, followed by 10 cv of Wash 

Buffer II (25 mM HEPES, pH 7.5, 150 mM NaCl, 0.05% (w/v) DDM, 0.01% (w/v) CHS, 

10% (v/v) glycerol, and 20 µM LSD). Proteins were eluted in 2.5 cv of Wash Buffer II + 250 

mM imidazole, concentrated in a 100 kDa molecular weight cut-off Vivaspin 20 

concentrator (Sartorius Stedim) to 500 µl, and imidazole was removed by desalting the 

protein over PD MiniTrap G-25 columns (GE Healthcare). The C-terminal 10× His-tag was 

removed by addition of His-tagged PreScission protease (GenScript) and incubation 

overnight at 4 °C. Protease, cleaved His-tag and uncleaved protein were removed by passing 

the suspension through equilibrated TALON IMAC resin (Clontech) and collecting the flow-

through. 5-HT2BR/LSD complexes were then concentrated to ∼40 mg/ml with a 100 kDa 

molecular weight cut-off Vivaspin 500 centrifuge concentrator (Sartorius Stedim). Protein 

purity and monodispersity were tested by analytical size-exclusion chromatography.

Lipidic cubic phase crystallization—Purified and concentrated 5-HT2BR/LSD 

complexes were reconstituted into lipidic cubic phase (LCP) by mixing detergent solubilized 

protein with a molten monoolein/cholesterol mixture (90%/10%) in a volume ratio of 2:3 

using the twin-syringe method (Caffrey and Cherezov, 2009): two 100 ul gas-tight pipettes 

(Hamilton) carrying protein and molten lipids were connected through a thin capillary (made 

in-house), and contents of one pipette were dispensed into the other and the protein/lipid mix 

was then repeatedly squeezed through the capillary until a transparent homogeneous paste 

was obtained. Crystallization was done on 96-well glass sandwich plates (Marienfeld 

GmbH) in 50 nl LCP drops dispensed from a 10 ul gas-tight pipette (Hamilton) using a 

handheld dispenser (Art Robbins Instruments) and overlaid with 1 µl of precipitant solution. 

Upon optimization, 5-HT2BR/LSD crystals were obtained in 100 mM Tris/HCl pH 7.5–8.0, 

90–130 mM potassium phosphate monobasic, 28–30% PEG400. Crystals grew to a 

maximum size of 70 µm ×30 µm ×20 µm within three days and were harvested directly from 

the LCP matrix using MiTeGen micromounts before flash-freezing and storage in liquid 

nitrogen.

Data collection, structure solution and refinement—X-ray data were collected at 

the 23ID-B and 23ID-D beamline (GM/CA CAT) at the Advanced Photon Source, Argonne, 

IL using a 10 µm minibeam at a wavelength of 1.0330 Å and a MarMosaic 300 CCD 

detector. Diffraction data were collected by exposing the crystals for 1–3 s to unattenuated 

beam using 1° oscillation. A full dataset was assembled from nine crystals due the rapid 
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onset of radiation decay at such high doses. Data were indexed, integrated, scaled, and 

merged using HKL3000 (Minor et al., 2006), and initial phases were obtained by molecular 

replacement in PHASER (McCoy et al., 2007) using two independent search models - a 

truncated model of the 7TM portion of the 5-HT2BR/ERG complex (PDB ID: 4IB4), and the 

thermostabilized apocytochrome b562RIL protein (PDB ID: 1M6T)(Chu et al., 2002). 

Refinement was performed with PHENIX (Adams et al., 2010) and REFMAC followed by 

manual examination and rebuilding of the refined coordinates in the program COOT 

(Emsley et al., 2010) using |2Fo| - |Fc|, |Fo| - |Fc|, and omit maps.

LSD synthesis—LSD was synthesized by the method of Johnson et al. (Johnson et al., 

1973) as follows. All operations were carried out under conditions of reduced light. A slurry 

of 315 mg (1.0 mmol) d-lysergic acid monohydrate (Farmitalia) in 20 mL of anhyd. CHCl3 

in a 50 mL 3-necked flask fitted with a reflux condenser was stirred under N2 and heated to 

reflux on a 90 °C oil bath. Diethylamine 731 mg (10 mmol) in 2.5 mL of CHCl3 and 307 mg 

(2 mmol) of POCl3 in 2.5 mL of CHCl3, were added simultaneously from separate dropping 

funnels over about 2 min. The reaction was kept at reflux for another 5 min until a clear, 

dark amber solution resulted. After cooling to RT the solution was washed with 20 mL of 1 

N NH4OH. The chloroform solution was dried overnight over Na2SO4. TLC (7:3 CHCl2-

Me2CO; alumina plate) of the dried solution showed a fast-moving bright blue fluorescent 

product spot, and a smaller light blue fluorescent spot at lower Rf (iso-LSD). The solution 

was filtered to remove drying agent and concentrated under reduced pressure to afford a 

brown viscous residue. The crude product thus obtained was purified by centrifugal thin 

layer chromatography (Chromatotron, Harrison Research), using a 2 mm silica plate, under a 

N2/NH3 atmosphere (N2 bubbled through concentrated NH4OH), and eluting with 100% 

CH2Cl2 (Nichols et al., 2002). The bright blue fluorescent band that eluted first was 

collected and concentrated by rotary vacuum evaporation and pumped under high vacuum 

overnight. It was a single blue fluorescent spot on TLC (7:3 CH2Cl2-Me2CO; alumina 

plate). The crude base was dissolved in a minimum volume of reagent MeOH and 0.5 

equivalent of D-(+)-tartaric acid was added. The solution was swirled at room temp until 

complete solution, was diluted with six volumes of anhyd. ethyl acetate, and placed into the 

cold room overnight whereupon the tartrate salt crystallized as fine needles. The crystals 

were collected by suction filtration, washed on the filter with EtOAc, and air dried to afford 

283.2 mg (71%) of crystalline product as the solvate with 2 molecules of MeOH. After 

drying under high vacuum, the LSD tartrate had a mp of 197–199 °C and a Lit mp (Stoll and 

Hofmann, 1955) of 198–200 °C.

The early eluting bright blue fluorescent band was collected and concentrated to afford LSD 

free base, which was a single bright blue fluorescent spot in two different TLC systems. The 

free base was dissolved in a minimum amount of methanol and 0.5 equivalent of L-(+)-

tartaric acid was added. After standing overnight in the cold room LSD tartrate crystallized 

as fine needles.

Calcium Flux Assay—Stable cell lines for 5-HT2BR and 5-HT2AR constructs were 

generated using the Flp-In 293 T-Rex Tetracycline inducible system (Invitrogen). Receptor 

mutants were generated as previously described (Liu et al., 2013; Wang et al., 2013). 
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Tetracycline-induced cells were seeded in 384-well poly-L-lysine plates at a density of 

10,000 cells/well in DMEM containing 1% dialyzed FBS at least 16–24 h before the calcium 

flux assay. On the day of the assay, the cells were incubated (20 µl/well) for 1 h at 37 °C 

with Fluo-4 Direct dye (Invitrogen) reconstituted in FLIPR buffer (1× HBSS, 2.5 mM 

probenecid, and 20 mM HEPES, pH 7.4). After dye loading, cells were placed in a 

FLIPRTETRA fluorescence imaging plate reader (Molecular Dynamics). Drug dilutions were 

prepared at 3× final concentration in drug buffer (1× HBSS, 20 mM HEPES, 0.1% BSA, 

0.01% ascorbic acid, pH 7.4) and aliquoted into 384-well plates and placed in the 

FLIPRTETRA for drug stimulation. Drug solutions used for FLIPR assay were exactly the 

same as used for the Tango assay. The fluidics module and plate reader of the FLIPRTETRA 

were programmed to read baseline fluorescence for 10 s (1 read/s), then 10 µl of drug/well 

was added and read for 5 min (1 read/s). Fluorescence in each well was normalized to the 

average of the first 10 reads (i.e., baseline fluorescence). Then, the maximum-fold increase, 

which occurred within the first 60 s after drug addition, was determined and fold over 

baseline was plotted as a function of drug concentration. Data were normalized to % 5-HT 

stimulation and analyzed using “log(agonist) vs. response” in Graphpad Prism 5.0.

Tango Arrestin Recruitment Assay—The 5-HT2BR and 5-HT2AR Tango constructs, 

which contain the TEV cleavage site and the tetracycline transactivator (tTA) fused to the C-

terminus of the receptor, were designed and assays were performed as previously described 

(Kroeze et al., 2015; Liu et al., 2013). HTLA cells expressing TEV fused-β-Arrestin2 and a 

tetracycline transactivator-driven luciferase (kindly provided by Dr. Richard Axel, Columbia 

Univ.) were grown in HTLA media (10% FBS DMEM containing 5 µg/mL Puromycin and 

100 µg/mL Hygromycin B). The day before transfection, HTLA cells were split to yield 

approximately 9×106 cells/15-cm plate next day. On the day of transfection, media from 15-

cm plates was removed, cells were washed with 10 mL of PBS, and media was replaced 

with DMEM containing 10% dialyzed FBS. After one hour, cells were transfected with 15 

µg per 15-cm of either 5-HT2BR or 5-HT2AR Tango construct using the calcium phosphate 

transfection method (Jordan et al., 1996). The next day, media and transfection reagents 

were removed, cells were washed with PBS, dissociated using trypsin, centrifuged and 

resuspended in DMEM supplemented with 1% dialyzed FBS. Transfected cells were then 

plated onto poly-L-lysine-coated 384-well white clear bottom cell culture plates at a density 

of 10,000 cells/well in a total of 40 µl. The cells were incubated for at least 6 h before 

receiving drug stimulation to allow for recovery and adherence to the plate. Drug solutions 

were prepared in drug buffer (1×HBSS, 20 mM HEPES, 0.1% BSA, 0.01% ascorbic acid, 

pH 7.4) at 3× and added to cells (20 µl per well) for overnight incubation. Drug solutions 

used for the Tango assay were exactly the same as used for the FLIPR assay, which was 

conducted in parallel to the Tango assay. After 20–22 hour overnight incubation, media and 

drug solutions were removed from plates and 20 µl per well of BrightGlo reagent (purchased 

from Promega, after 1:20 dilution) was added per well. The plate was incubated for 20 min 

at room temperature in the dark before being counted using a luminescence counter. Results 

(relative luminescence units) were plotted as a function of drug concentration, normalized to 

% 5-HT stimulation, and analyzed using “log(agonist) vs. response” in GraphPad Prism 5.0.
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Phosphoinositide (PI) Hydrolysis Assay—Phosphoinositide (PI) hydrolysis assays 

measuring inositol phosphates (IP) were performed using the scintillation proximity assay 

(Bourdon et al., 2006; Huang et al., 2009). On the day before the assay, cells were seeded 

into 96-well poly-lysine coated plates at a density of 40–50,000 cells/well in 100 µL 

inositol-free DMEM containing 1% dialyzed FBS. After 6 hours, an additional 100 µL of 

label media was added containing 1 µCi/well (final concentration) of [3H]-myo-inositol 

(PerkinElmer) in inositol-free DMEM (Caisson Labs) containing 1% dialyzed FBS and 

plates were incubated overnight for 16–18 hours at 37°C and 5% CO2. The next day, label 

media was removed and cells were washed twice with 60 uL of drug buffer (1× HBSS, 20 

mM HEPES, 0.1% BSA, 0.01% ascorbic acid, pH 7.4), then 60 uL of drug buffer was added 

per well. Afterwards, 30 uL of drug (3X) was added per well and incubated at 37°C for 

various time durations at 37°C. To capture IP accumulation, lithium chloride (10 µL/well, 15 

mM final concentration) was added 15 minutes before lysis. The assay was terminated by 

replacement of the incubation medium with 40 µL of 50 mM formic acid. After overnight 

incubation at 4°C, 10 µL of lysates were added to 96-well flexible, clear microplates 

(PerkinEmer) containing 75 µL of 0.2 mg/well RNA binding yttrium silicate beads 

(PerkinElmer), and incubated for 1 hour on a shaker. Afterwards, plates were centrifuged at 

300xg for 1 minute, and radioactivity was measured using a Wallac MicroBeta Trilux plate 

reader (PerkinElmer). Data were plotted as counts per minute (CPM) as a function of drug 

concentration, normalized to % 5-HT stimulation, and analyzed using “log(agonist) vs. 

response” in GraphPad Prism 5.0.

Bioluminescence Resonance Energy Transfer (BRET) Arrestin Assay—To 

measure 5-HT2BR-mediated β-arrestin2 recruitment, HEK293T cells were co-transfected in 

a 1:1:15 ratio with human 5-HT2BR containing C-terminal Renilla luciferase (RLuc8), 

GRK2, and Venus-tagged N-terminal β-arrestin2. After at least 24 hours, transfected cells 

were plated in poly-lysine coated 96-well white clear bottom cell culture plates in plating 

media (DMEM + 1% dialyzed FBS) at a density of 40–50,000 cells in 200 µl per well and 

incubated overnight. The next day, media was decanted and cells were washed twice with 60 

µL of drug buffer (1×HBSS, 20 mM HEPES, 0.1% BSA, 0.01% ascorbic acid, pH 7.4), then 

60 µL of drug buffer was added per well. For kinetic experiments, plates were incubated at 

37°C at least 20 minutes prior to receiving drug stimulation. Afterwards, 30 µL of drug (3X) 

was added per well and incubated for designated time points. Before reading, 10 µL of the 

RLuc substrate, coelenterazine h (Promega, 5 µM final concentration) was added per well, 

incubated an additional 5 minutes to allow for substrate diffusion, and plates were 

immediately read for both luminescence at 485 nm and fluorescent eYFP emission at 530 

nm for 1 second per well using a Mithras LB940 multimode microplate reader. The ratio of 

eYFP/RLuc was calculated per well and the net BRET ratio was calculated by subtracting 

the eYFP/RLuc per well from the eYFP/RLuc ratio in wells without Venus-β-Arrestin 

present. The net BRET ratio was plotted as a function of drug concentration using Graphpad 

Prism 5 (Graphpad Software Inc., San Diego, CA). Data were normalized to % 5-HT 

stimulation and analyzed using nonlinear regression “log(agonist) vs. response” in GraphPad 

Prism 5.0..
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Ligand Association and Dissociation Radioligand Binding Assays—Radioligand 

dissociation and association assays were performed in parallel utilizing the same 

concentrations of radioligand, membrane preparations, and binding buffer (50 mM Tris, 10 

mM MgCl2, 0.1 mM EDTA, 0.1% BSA, 0.01% ascorbic acid, pH 7.4). All assays utilized at 

least 2–4 concentrations of radioligand ([3H]-LSD = 0.2–5.0 nM; [3H]-mesulergine = 0.5–

2.0 nM) (PerkinElmer). For dissociation assays, membranes were incubated with radioligand 

for at least 2 hours at 37 °C (unless otherwise indicated) before the addition of 10 µL of 10 

µM excess cold ligand to the 200 µL membrane suspension at designated time points. For 

association experiments, 100 µL of radioligand was added to 100 µL membrane suspensions 

at designated time points. Time points spanned 2 minutes to 12 hours, depending on 

experimental conditions and radioligand. For the determination of kon and koff for unlabeled 

ergotamine (ERG), membranes of either 5-HT2BR or 5-HT2BR L209AEL2 were incubated 

with [3H]-LSD and several concentrations of ergotamine. Non-specific binding was 

determined by addition of 10 µM SB 206553 for 5-HT2BR, or 10 µM spiperone for 5-

HT2AR. Immediately at time = 0 min, plates were harvested by vacuum filtration onto 0.3% 

polyethyleneimine pre-soaked 96-well filter mats (Perkin Elmer) using a 96-well Filtermate 

harvester, followed by three washes of cold wash buffer (50 mM Tris pH 7.4). Scintillation 

(Meltilex) cocktail (Perkin Elmer) was melted onto dried filters and radioactivity was 

counted using a Wallac Trilux MicroBeta counter (PerkinElmer). Data were analyzed using 

“Dissociation – One phase exponential decay” or “Association kinetics – Two or more 

concentrations of hot radioligand” in Graphpad Prism 5.0. The previously determined [3H]-

LSD kon and koff rates of 5-HT2BR or 5-HT2BR L209AEL2 was used to estimate the kon and 

koff rates of ergotamine using the “Kinetics of competitive binding” equation in Graphpad 

Prism 5.0 as put forth by Motulsky and Mahan (Motulsky and Mahan, 1984).

MD simulations set up—Simulations of 5-HT2BR were based on both an ERG-bound 

crystal structure (PDB ID: 4NC3)(Liu et al., 2013) and the LSD-bound crystal structure 

described in this manuscript. The receptor was simulated in five distinct conditions (Table 

S2): (A) the LSD-bound crystal structure described in the manuscript; (B) the same structure 

with the ligand removed; (C) the LSD-bound crystal structure with the L209AEL2 mutation; 

(D) the LSD-bound crystal structure with the L209AEL2 mutation and the ligand removed; 

and (E) the ERG-bound crystal structure with the ligand removed. Coordinates were 

prepared by first removing the crystallized BRIL fragment and non-receptor molecules 

except for LSD (when applicable), the cholesterol neighboring helix VII, and 

crystallographic water molecules within or near the receptor.

For unliganded simulation conditions, ERG or LSD was removed. Prime (Schrödinger, Inc.) 

was used to model in missing side-chains and the missing EL2 residues D198EL2, V199EL2, 

and D200EL2. Hydrogen atoms were added, and protein chain termini were capped with the 

neutral groups acetyl and methylamide.

In the simulations reported in this paper, titratable residues were left in their dominant 

protonation state at pH 7.0. In particular, all aspartate residues were deprotonated. Previous 

studies have suggested that, in the β2 adrenergic receptor, residues D2.50 and D3.49 may be 

deprotonated in the inactive state and protonated in the active state (Ghanouni et al., 2000; 

Ranganathan et al., 2014). Because the ideal protonation state is uncertain in this case, we 
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performed additional simulations with D1002.50 and D1523.49 protonated (and all other 

titratable residues were left in their dominant protonation state at pH 7.0). We did not 

observe any significant differences between simulations with D1002.50 and D1523.49 

protonated and simulations with D1002.50 and D1523.49 deprotonated.

In the liganded simulations, the LSD tertiary amine nitrogen was protonated, corresponding 

to the dominant protonation state at pH 7.0 and enabling formation of the conserved salt 

bridge with neighboring D1353.32.

The prepared protein structures were aligned on the transmembrane helices to the 

Orientation of Proteins in Membranes (OPM)(Lomize et al., 2006) structure of PDB 4NC3, 

and internal waters added with Dowser (Zhang and Hermans, 1996). The structures were 

then inserted into a pre-equilibrated palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer, 

and solvated with 0.15 M NaCl in explicitly represented water, then neutralized by removing 

sodium ions. Final system dimensions were approximately 80 × 70 × 120 Å3, including 

about 120 lipids, 29 sodium ions, 32 chloride ions, and 12,000 water molecules.

MD simulation force field parameters—We used the CHARMM36 parameter set for 

protein molecules, lipid molecules, and salt ions, and the CHARMM TIP3P model for 

water; protein parameters incorporated CMAP terms (Best et al., 2012a; Best et al., 2012b; 

Huang and MacKerell, 2013; Klauda et al., 2010; MacKerell et al., 1998). Parameters for 

LSD were generated using the CHARMM General Force Field (CGenFF)(Vanommeslaeghe 

et al., 2010; Vanommeslaeghe and MacKerell, 2012; Vanommeslaeghe et al., 2012) with the 

ParamChem server (paramchem.org), version 1.0.0. Full parameter sets are available upon 

request.

MD simulation protocol—Simulations were performed on GPUs using the CUDA 

version of PMEMD (Particle Mesh Ewald Molecular Dynamics) in Amber15 (Case et al., 

2015). Prepared systems were minimized, then equilibrated as follows: The system was 

heated using the Langevin thermostat from 0 to 100K in the NVT ensemble over 12.5 ps 

with harmonic restraints of 10.0 kcal·mol−1·Å−2 on the non-hydrogen atoms of lipid, protein, 

and ligand, and initial velocities sampled from the Boltzmann distribution. The system was 

then heated to 310K over 125 ps in the NPT ensemble with semi-isotropic pressure coupling 

and a pressure of one bar. Further equilibration was performed at 310 K with harmonic 

restraints on the protein and ligand starting at 5.0 kcal·mol−1·Å−2 and reduced by 1.0 

kcal·mol−1·Å−2 in a stepwise fashion every 2 ns, for a total of 10 ns of additional restrained 

equilibration.

Multiple simulations were initialized from the final snapshot of the restrained equilibration 

for each of the five conditions, for a total of 36 simulations (Table S2). These simulations 

were conducted in the NPT ensemble at 310 K and 1 bar, using a Langevin thermostat and 

Monte Carlo barostat. In each of these simulations, we performed 5 ns of unrestrained 

equilibration followed by a 1.1–6.7 µs production run.

Simulations used periodic boundary conditions, and a time step of 4.0 fs, with hydrogen 

mass repartitioning (Hopkins et al., 2015). Bond lengths to hydrogen atoms were 
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constrained using SHAKE. Non-bonded interactions were cut off at 9.0 Å, and long-range 

electrostatic interactions were computed using the particle mesh Ewald (PME) method with 

an Ewald coefficient β of approximately 0.31 Å and B-spline interpolation of order 4. The 

FFT grid size was chosen such that the width of a grid cell was approximately 1 Å..

Analysis protocols for MD simulations—Trajectory snapshots were saved every 200 

ps during production simulations. Trajectory analysis was performed using VMD 

(Humphrey et al., 1996) and CPPTRAJ (Roe and Cheatham, 2013), and visualization was 

performed using VMD.

Root mean square fluctuation (RMSF) values shown in Figure 4F measure the extent to 

which an atom fluctuates about its average position in simulation. The first 1 µs of each 

simulation trajectory was omitted from this analysis to avoid including any initial relaxation 

or equilibration of the system in the measurement (see Figure S2B). Trajectories were 

aligned to the initial crystal structure on all transmembrane helix Cα atoms. For each 

simulation condition, an average structure was generated by considering trajectory snapshots 

from all simulations under that condition. The RMSF for each Cα atom was then calculated 

for each trajectory under that condition relative to this average structure using VMD’s 

Python scripting functionality. Each bar in Figure 4F represents a mean of the RMSF values 

for the simulations under one condition.

Homology modeling of 5-HT2AR—Sequence alignment for construction of 5-HT2AR 

homology models was generated with PROMALS3D (Pei and Grishin, 2014), using 

sequences of human 5-HT2AR (Uniprot accession number: P28223), 5-HT2BR (P41595), as 

well as sequences of all available 5-HT2BR X-ray structures [PDB: 4IB4 (chain A)(Liu et 

al., 2013), 4NC3 (chain A)(Liu et al., 2013), 5-HT2BR/LSD complex (chain A; current 

work)]. The alignment was manually edited to remove the amino and carboxy termini that 

extended past the template structure, and to remove the engineered apocytochrome b562 RIL 

(BRIL) from the template. A total of 1000 homology models were built using 

MODELLER-9v15 (Webb and Sali, 2014), based on the crystal structure of 5-HT2BR in 

complex with LSD as the template. LSD was retained in the modeling process to ensure a 

ligand-competent orthosteric site. Models were then evaluated for their ability to enrich 

known 5-HT2AR ligands over property-matched decoys through docking to the orthosteric 

binding site, using DOCK 3.7(Coleman et al., 2013) (see details below). Decoy molecules 

share the physical properties of known ligands, but are topologically distinct from them and 

so unlikely to bind, thus controlling for the enrichment of molecules by physical properties 

alone. For this aim, 34 known ligands with MW < 350 were extracted from the IUPHAR 

database (Southan et al., 2016), and 1899 property-matched decoys were generated using the 

DUD-E server (Mysinger et al., 2012). The models were ranked on the basis of their 

adjusted logAUC and the enrichment factor at 1% of the database. Models also had to 

reproduce the crystallographic pose of LSD in the template structure and form key 

interactions with the receptor such as the observed salt bridge with Asp3.32. The selected 

best scoring model in terms of ligand enrichment was further optimized through 

minimization with the AMBER protein force field and the GAFF ligand force field 

supplemented with AM1BCC charges (Case et al., 2015).
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Molecular docking of LSD and its derivatives—LSD and its derivatives (S,S)-

Azetidide (SSAz), (R,R)-Azetidide (RRAz) and lysergamide (LSA) were docked to the 

orthosteric binding pocket of the 5-HT2AR homology model and the 5-HT2BR crystal 

structure using DOCK3.7 (Coleman et al., 2013). DOCK3.7 places pre-generated flexible 

ligands into the binding site by superimposing atoms of each molecule on matching spheres, 

representing favorable positions for individual ligand atoms. Here, 45 matching spheres 

were used, based on the crystallized LSD pose. The resulting docked ligand poses were 

scored by summing the receptor-ligand electrostatics and van der Waals interaction energies, 

and corrected for context-dependent ligand desolvation. Receptor structures were protonated 

using Reduce (Word et al., 1999). Partial charges from the united-atom AMBER (Case et al., 

2015) force field were used for all receptor atoms. Grids which evaluate the different energy 

terms of the DOCK scoring function were precalculated using AMBER (Case et al., 2015) 

for the van der Waals term, QNIFFT (Gallagher and Sharp, 1998; Sharp, 1995) (an 

adaptation of DELPHI) for electrostatics, and ligand desolvation (Mysinger and Shoichet, 

2010). Ligands were protonated with Marvin (version 15.11.23.0, ChemAxon, 2015; http://

www.chemaxon.com), at pH 7.4. Each protomer was rendered into 3D using Corina 

(Sadowski et al., 1994) (Molecular Networks GmbH) and conformationally sampled using 

Omega (Hawkins et al., 2010) (OpenEye Scientific Software). Ligand charges and initial 

solvation energies were calculated using AMSOL (Chambers et al., 1996; Li et al., 1998).

QUANTIFICATION AND STATISTICAL ANALYSIS

Dose response, log(τ/KA) calculation and ligand bias quantification—In detail, 

normalized dose-response data with 5-HT as the reference ligand were fit using the Black 

and Leff operational model in Graphpad Prism 5.0, where EMAX represents the maximum 

response of the system and was set to 100, KA is the functional dissociation constant for the 

agonist, and τ is the efficacy of the agonist in the given pathway, and n is the slope of the 

response. Data for LSD was fit globally with 5-HT responses such that EMAX and n are 

shared parameters and KA and τ are then fit individually for LSD.

Transduction coefficients (log (τ/KA)) were calculated using the Black and Leff operational 

model(Black and Leff, 1983) in Graphpad Prism 5.0. Using 5-HT as the full agonist 

reference, transduction coefficients for Gq calcium flux and Tango β-Arrestin2 translocation 

were calculated and averaged across experiments (n=3). For time-dependent estimates of IP 

accumulation and β-Arrestin2 BRET translocation, transduction coefficients were calculated 

for each time point and averaged across experiments (n=3). Calculation of bias factors 

utilized the method by Kenakin et al.(Kenakin et al., 2012), where the Δlog(τ/KA) was 

calculated relative to the reference 5-HT and the ΔΔlog(τ/KA) was calculated by subtracting 

the Gq transduction coefficient from the β-Arrestin2 transduction coefficient.

DATA AND SOFTWARE AVAILABILITY

Data Resources—HKL2000 was used to process the raw diffraction data and different 

software found in the phenix and ccp4 software suites were then used to determine, refine, 

and build the structural model. All software used are reported in Method Details and 

indicated in the Key Resources Table. The accession number for the coordinates and 

structures factors of 5-HT2BR/LSD complex reported in this paper is PDB: 5TVN
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Highlights

• Crystal Structure of the human 5-HT2B receptor bound to LSD is determined

• LSD shows unexpected binding configuration in the orthosteric site

• LSD has extremely slow on- and off-rate at 5-HT2B and 5-HT2A receptors

• Accelerated LSD kinetics selectively reduce arrestin signaling at 5-HT2B and 

5-HT2A
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In Brief

The structure of LSD with a serotonin receptor reveals the basis for its long-lasting 

effects and suggests ways to selectively alter receptor signaling.
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Figure 1. Architecture and ligand-receptor interactions of the LSD-bound human 5-HT2B 
receptor
(A) 5-HT2BR cartoon representation (light blue) with helices labeled according to GPCR 

nomenclature. LSD is shown as a stick model with carbons, nitrogens, and oxygens colored 

in magenta, blue, and red, respectively. The LSD stick model is overlaid with a semi-

transparent surface representation of the compound.

(B) Close up view of LSD and the orthosteric binding site of the receptor from the 

membrane.

(C) Close up view of LSD and the orthosteric binding site of the receptor from the 

extracellular space (D) 2D representation of LSD, Ergotamine (ERG), and 5-

hydroxytryptamine (5-HT/serotonin). LSD belongs to the class of ergolines like ERG, and 

contains a diethylamide substituent (highlighted in light blue) connected to the ergoline 

scaffold (highlighted in yellow). Ergolines contain a tryptamine core scaffold (dark blue) 

like the endogenous ligand 5-hydroxytryptamine (5-HT/serotonin). Diagram of interactions 

between LSD and the receptor in the ligand binding pocket is shown, with the hydrogen 

bonds between D1353.32 and the LSD basic nitrogen in yellow, and G2215.42 and the LSD 

indole nitrogen indicated by red dashes, respectively. Residues are labeled according to 

Ballesteros-Weinstein nomenclature. Residues highlighted in red show significant changes 

between LSD- and ERG-occupied 5-HT2BR while residues highlighted in green show a 

significant interaction with ERG but not LSD. See also Figure S1.
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Figure 2. Conformational differences in the ligand binding pockets of LSD- and ERG-bound 5-
HT2BR
(A) Close-up view of the orthosteric pockets of 5-HT2BR (light blue) bound to LSD 

(magenta) superposed with 5-HT2BR (green) bound to ERG (dark green). Compounds and 

relevant sidechains are shown as sticks and residues are labeled according to Ballesteros-

Weinstein nomenclature. Surface representation of M2185.39 illustrates how ERG binding 

requires a conformational change to accommodate the phenyl ring of ERG. Insert shows 

schematic illustrating that different ergoline substituents (R, red circle) and their interactions 
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with the receptor likely determine the orientation of the ergoline scaffold, which seems to be 

able to rotate around the hydrogen bond to the conserved aspartate D3.32.

(B) View of the 5-HT2BR ligand binding pocket from the extracellular space highlighting 

conformational differences in helix and loop positions in response to binding of ERG 

(green) vs LSD (light blue). Distances were measured between the Cα atoms of T1142.64, 

L209EL2, L3476.58, N354EL3, and T3567.29.

(C–D) Surface representation illustrating shape of orthosteric binding pocket in the 5-

HT2BR/LSD complex (C) and the 5-HT2BR/ERG complex (D). This particular cross-section 

cuts through M2185.39 in such a way that the extended binding site appears smaller in the 

presence of ERG than in the presence of LSD, although calculation of binding pocket 

volume with CASTp shows a 28.6% decrease in overall volume of LSD vs ERG. See also 

Figure S2 and S3.
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Figure 3. Diethylamide configuration determines LSD pharmacology at 5-HT2BR and 5-HT2AR
(A) Side and top view of LSD (magenta) bound 5-HT2BR (light blue) crystal structure 

overlaid with small molecule crystal structure of unbound LSD (yellow) highlight 

differences in LSD’s diethylamide conformation.

(B) Snapshots of LSD (magenta) from a 5-HT2BR-bound MD simulation show that LSD 

maintains its 5-HT2BR-bound crystallographic conformation, with substantial fluctuation 

only in the terminal methyl groups. Snapshots are aligned on the ergoline ring system.
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(C) Chemical structures of LSD (purple) and diethyl constrained lysergamides, (S,S)-

Azetidide (SSAz, green), (R,R)-Azetidide (RRAz, red), and lysergic acid amide (LSA, 

orange) indicating 5-HT2BR-bound LSD diethyl conformation resembles the conformation 

of (S,S)-Azetidide.

(D) Lysergamide-mediated β-arrestin2 recruitment at 5-HT2BR and 5-HT2AR (n =3) 

highlights the importance of diethylamide conformation for LSD’s function.

(E) Lysergamide-mediated Gq-calcium flux at 5-HT2BR and 5-HT2AR (n =3) indicates lack 

of stereospecific preference for LSD azetidides in this pathway. See also Figure S4.
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Figure 4. Mutation of an EL2 “lid” decreases LSD’s long residence time at 5-HT2BR, which 
affects functional selectivity
(A) Comparison of LSD dissociation from wild type 5-HT2BR and L209AEL2 mutant (n =3) 

at 37°C shows a slow LSD off-rate at the wild type and a faster off-rate at the mutant.

(B) (Left and center) In the 5-HT2BR crystal structure, EL2 residues 207–214 form a lid 

(dark blue, with other nearby residues in light blue) that covers the binding pocket. (Right) 

In MD simulations of the wild type, this lid occludes access to the binding pocket most of 

the time, but occasionally moves aside.
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(C) (Left) LSD (magenta) bound to 5-HT2BR (light blue) orthosteric pocket viewed from 

membrane and extracellular space, with EL2 residue L209EL2 highlighted in red. (Right) 

The L209EL2 sidechain (now viewed from roughly the opposite direction) forms extensive 

hydrophobic contacts with residues in TMs III, IV, and V.

(D) Mutating the sidechain L209EL2 to alanine does not lead to a more exposed binding 

pocket in the crystal structure (left); exposure of the binding pocket still depends on motion 

of the lid, as seen in simulation (right).

(E) The lid is more mobile in simulations of the mutant (red) than in simulations of the wild 

type (gray). Each image shows six representative snapshots of the lid from simulation, with 

the remainder of the receptor in light gray. The alpha carbon atom of residue 209 is shown as 

a sphere.

(F) Root mean square fluctuation (RMSF) of the alpha carbon of each lid residue provides a 

quantitative measure of mobility, demonstrating that the lid fluctuates more in simulations of 

the L209AEL2 mutant than in simulations of the wild-type receptor, whether or not LSD is 

bound. RMSF measures the fluctuations of an atom around its average position during 

simulation. Error bars show standard error of the mean across 3–9 simulations per condition. 

*represent significant differences between WT and L209AEL2 simulations (p < 0.01, as 

measured by a two-sided Welch’s t-test).

(G) Arrestin and Gq functional activities indicate that 5-HT2BR L209AEL2 mutant 

selectivity disrupts β-arrestin2 recruitment activity, leaving Gq function intact (n=3). See 

also Figure S3 and S5.
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Figure 5. Accelerated ligand kinetics also affect pharmacological profile of LSD at 5-HT2AR
(A) Docking pose of LSD (magenta) in 5-HT2AR model (beige) illustrates similar binding 

mode compared to 5-HT2BR/LSD complex structure. L229EL2 (red) is in the same position 

as L209EL2 in the 5-HT2BR/LSD complex structure.

(B) Comparison of LSD dissociation from wild type 5-HT2AR and L229AEL2 mutant (n =3), 

shows increased LSD off-rate at the mutant receptor.

(C) Arrestin and Gq functional activities indicate that 5-HT2AR L229AEL2 mutant 

selectivity disrupts β-arrestin2 recruitment activity, leaving Gq function intact (n=3).

(D) Kinetic measurement of LSD-mediated β-arrestin2 recruitment at wild type 5-HT2AR 

and L229AEL2 mutant using bioluminescence resonance energy transfer (BRET). At the 

wild type receptor, LSD’s potency and efficacy increase with longer compound stimulation, 

whereas LSD exhibits weak potency and efficacy at the L229AEL2 mutant that does not 

change over time.

(E) Kinetic measurement of LSD-mediated β-arrestin2 recruitment at wild type 5-HT2BR 

and the L209AEL2 mutant using bioluminescence resonance energy transfer (BRET). At the 

wild type receptor, LSD’s potency and efficacy increase with longer compound stimulation, 

whereas LSD exhibits weak potency and efficacy at the L209AEL2 mutant that does not 

change over time.

(F) Heat map of time-dependent alterations in signaling for WT and mutant 5-HT2AR and 5-

HT2BR. The heat map [see Supplementary Methods for details] illustrates how signaling as 

quantified by calculating transduction coefficients are altered in a time-dependent fashion at 

WT and mutant 5-HT2AR and 5-HT2BR. Time is measured in minutes. See also Figure S5.
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Table 1

Data collection and refinement statistics. Highest resolution shell is shown in parentheses.

Structure Human 5-HT2BR (ΔN/ΔICL3BRIL/ΔC)-LSD complex

Data Collection APS, GMCA/CAT 23ID-B/D, 10 µm microfocus beam

Crystals 9

Resolution range 29.2–2.9(3.0–2.9)

Space group C2221

Unit cell Dimensions a, b, c (Å) 59.2 119.2 171.0

Total reflections 46859 (4290)

Unique reflections 12568(1163)

Multiplicity 3.7 (3.6)

Completeness (%) 90.4 (92.2)

Mean I/σ(I) 6.2 (2.0)

Rmerge (%) 15.0(75.4)

CC1/2 (%) 98.4 (62.9)

CC* (%) 99.6 (87.9)

Refinement Statistics

Reflections used in refinement 12393 (1162)

Reflections used for R-free 638 (67)

R-work (%) 22.5 (28.4)

R-free (%) 26.6 (35.8)

CC-work (%) 93.7 (77.9)

CC-free (%) 87.4 (65.4)

Number of Atoms

5-HT2BR 2218

BRIL 721

LSD 24

Lipid and other 60

Overall B-factors (Å2)

5-HT2BR 60.0

BRIL 70.0

LSD 55.3

Lipids and other 67.6

Model Statistics

RMSD-bonds (Å) 0.003

RMSD-angles (°) 0.94

Ramachandran favored (%)# 97
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Structure Human 5-HT2BR (ΔN/ΔICL3BRIL/ΔC)-LSD complex

Ramachandran allowed (%)# 3.4

Ramachandran outliers (%)# 0

Rotamer outliers (%)# 1.4

Clashscore# 2.51

*
Rmerge = Σhkl |I(hkl) - <I(hkl)>|/ Σhkl(hkl), where <I(hkl)> is the mean of the symmetry equivalent reflections of I(hkl).

#
As defined in MolProbity
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Table 2

LSD Dissociation and association rates at wild-type and mutant 5-HT2AR and 5-HT2BR.

Receptor
BMAX ± SEM

fmol/mg protein
Residence Time, min
(koff ± SEM) min−1 kon ± SEM, M−1 min−1 Kd, nM

(pKd ± SEM)

5-HT2AR wild-type 2180 ± 350 221 (0.005 ± 0.001) 1.58×107 ± 4.06×106 0.33 (9.48 ± 0.11)

5-HT2AR L229AEL2 1650 ± 520 50 (0.020 ± 0.003) 3.34×107 ± 6.20×106 0.81 (9.22 ± 0.25)

5-HT2BR wild-type 3010 ± 614 46 (0.022 ± 0.004) 2.59×107 ± 3.04×106 0.91 (9.08 ± 0.09)

5-HT2BR L209AEL2 3628 ± 598 4 (0.236 ± 0.033) 4.20×107 ± 5.36×106 2.31 (8.63 ± 0.08)

Data were acquired by association and dissociation kinetic experiments conducted in parallel at 37°C using [3H]LSD (concentration range 0.2–5.0 
nM). Estimates of koff, kon, and Kd were obtained from three independent experiments performed in duplicate. Residence time was calculated as 

1/koff.
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