8,921 research outputs found
Quantum dot dephasing by edge states
We calculate the dephasing rate of an electron state in a pinched quantum
dot, due to Coulomb interactions between the electron in the dot and electrons
in a nearby voltage biased ballistic nanostructure. The dephasing is caused by
nonequilibrium time fluctuations of the electron density in the nanostructure,
which create random electric fields in the dot. As a result, the electron level
in the dot fluctuates in time, and the coherent part of the resonant
transmission through the dot is suppressed
Giant isotope effect in the incoherent tunneling specific heat of the molecular nanomagnet Fe8
Time-dependent specific heat experiments on the molecular nanomagnet Fe8 and
the isotopic enriched analogue 57Fe8 are presented. The inclusion of the 57Fe
nuclear spins leads to a huge enhancement of the specific heat below 1 K,
ascribed to a strong increase in the spin-lattice relaxation rate Gamma arising
from incoherent, nuclear-spin-mediated magnetic quantum tunneling in the
ground-doublet. Since Gamma is found comparable to the expected tunneling rate,
the latter process has to be inelastic. A model for the coupling of the
tunneling levels to the lattice is presented. Under transverse field, a
crossover from nuclear-spin-mediated to phonon-induced tunneling is observed.Comment: Replaced with version accepted for publication in Physical Review
Letter
Diffuse emission in the presence of inhomogeneous spin-orbit interaction for the purpose of spin filtration
A lateral interface connecting two regions with different strengths of the
Bychkov-Rashba spin-orbit interaction can be used as a spin polarizer of
electrons in two dimensional semiconductor heterostructures. [Khodas \emph{et
al.}, Phys. Rev. Lett. \textbf{92}, 086602 (2004)]. In this paper we consider
the case when one of the two regions is ballistic, while the other one is
diffusive. We generalize the technique developed for the solution of the
problem of the diffuse emission to the case of the spin dependent scattering at
the interface, and determine the distribution of electrons emitted from the
diffusive region. It is shown that the diffuse emission is an effective way to
get electrons propagating at small angles to the interface that are most
appropriate for the spin filtration and a subsequent spin manipulation.
Finally, a scheme is proposed of a spin filter device, see Fig. 9, that creates
two almost fully spin-polarized beams of electrons.Comment: 11 pages, 9 figure
Cosmic-ray electron injection from the ionization of nuclei
We show that the secondary electrons ejected from the ionization of heavy
ions can be injected into the acceleration process that occurs at supernova
remnant shocks. This electron injection mechanism works since ions are ionized
during the acceleration when they move already with relativistic speed, just
like ejected electrons do. Using the abundances of heavy nuclei measured in
cosmic rays at Earth, we estimate the electron/proton ratio at the source to be
~10^-4, big enough to account for the nonthermal synchrotron emission observed
in young SNRs. We also show that the ionization process can limit the maximum
energy that heavy ions can reach.Comment: 4 pages, 1 figure, accepted for publication in Physical Review
Letter
Levinson theorem for Aharonov-Bohm scattering in two dimensions
We apply the recently generalized Levinson theorem for potentials with
inverse square singularities [Sheka et al, Phys.Rev.A, v.68, 012707 (2003)] to
Aharonov-Bohm systems in two-dimensions. By this theorem, the number of bound
states in a given m-th partial wave is related to the phase shift and the
magnetic flux. The results are applied to 2D soliton-magnon scattering.Comment: 5 pages (REVTeX
Acoustoelectric current and pumping in a ballistic quantum point contact
The acoustoelectric current induced by a surface acoustic wave (SAW) in a
ballistic quantum point contact is considered using a quantum approach. We find
that the current is of the "pumping" type and is not related to drag, i.e. to
the momentum transfer from the wave to the electron gas. At gate voltages
corresponding to the plateaus of the quantized conductance the current is
small. It is peaked at the conductance step voltages. The peak current
oscillates and decays with increasing SAW wavenumber for short wavelengths.
These results contradict previous calculations, based on the classical
Boltzmann equation.Comment: 4 pages, 1 figur
Effect of Interactions on the Admittance of Ballistic Wires
A self-consistent theory of the admittance of a perfect ballistic, locally
charge neutral wire is proposed. Compared to a non-interacting theory,
screening effects drastically change the frequency behavior of the conductance.
In the single-channel case the frequency dependence of the admittance is
monotonic, while for two or more channels collective interchannel excitations
lead to resonant structures in the admittance. The imaginary part of the
admittance is typically positive, but can become negative near resonances.Comment: Presentation considerably modified; the results are unchanged. 4
pages, 2 figures .eps-format include
Probing Micro-quasars with TeV Neutrinos
The jets associated with Galactic micro-quasars are believed to be ejected by
accreting stellar mass black-holes or neutron stars. We show that if the energy
content of the jets in the transient sources is dominated by electron-proton
plasma, then a several hour outburst of 1--100 TeV neutrinos produced by photo-
meson interactions should precede the radio flares associated with major
ejection events. Several neutrinos may be detected during a single outburst by
a 1km^2 detector, thereby providing a powerful probe of micro-quasars jet
physics.Comment: Accepted to PRL. More detailed discussion of particle acceleratio
Induced scattering of short radio pulses
Effect of the induced Compton and Raman scattering on short, bright radio
pulses is investigated. It is shown that when a single pulse propagates through
the scattering medium, the effective optical depth is determined by the
duration of the pulse but not by the scale of the medium. The induced
scattering could hinder propagation of the radio pulse only if close enough to
the source a dense enough plasma is presented. The induced scattering within
the relativistically moving source places lower limits on the Lorentz factor of
the source. The results are applied to the recently discovered short
extragalactic radio pulse.Comment: submitted to Ap
A Mesoscopic Quantum Eraser
Motivated by a recent experiment by Buks et al. [Nature 391, 871 (1998)] we
consider electron transport through an Aharonov-Bohm interferometer with a
quantum dot in one of its arms. The quantum dot is coupled to a quantum system
with a finite number of states acting as a which-path detector. The
Aharonov-Bohm interference is calculated using a two-particle scattering
approach for the joint transitions in detector and quantum dot. Tracing over
the detector yields dephasing and a reduction of the interference amplitude. We
show that the interference can be restored by a suitable measurement on the
detector and propose a mesoscopic quantum eraser based on this principle.Comment: 7 pages, 2 figures, to appear in Europhys. Lett., uses EuroPhys.sty
and EuroMacro.tex (included
- …