1,785 research outputs found

    Direct and Indirect Effects of Climate Change on a Prairie Plant Community

    Get PDF
    Background Climate change directly affects species by altering their physical environment and indirectly affects species by altering interspecific interactions such as predation and competition. Recent studies have shown that the indirect effects of climate change may amplify or counteract the direct effects. However, little is known about the the relative strength of direct and indirect effects or their potential to impact population persistence. Methodology/Principal Findings We studied the effects of altered precipitation and interspecific interactions on the low-density tiller growth rates and biomass production of three perennial grass species in a Kansas, USA mixed prairie. We transplanted plugs of each species into local neighborhoods of heterospecific competitors and then exposed the plugs to a factorial manipulation of growing season precipitation and neighbor removal. Precipitation treatments had significant direct effects on two of the three species. Interspecific competition also had strong effects, reducing low-density tiller growth rates and aboveground biomass production for all three species. In fact, in the presence of competitors, (log) tiller growth rates were close to or below zero for all three species. However, we found no convincing evidence that per capita competitive effects changed with precipitation, as shown by a lack of significant precipitation × competition interactions. Conclusions/Significance We found little evidence that altered precipitation will influence per capita competitive effects. However, based on species\u27 very low growth rates in the presence of competitors in some precipitation treatments, interspecific interactions appear strong enough to affect the balance between population persistence and local extinction. Therefore, ecological forecasting models should include the effect of interspecific interactions on population growth, even if such interaction coefficients are treated as constants

    Effect of sequence dispersity on morphology of tapered diblock copolymers from molecular dynamics simulations

    Get PDF
    Tapered diblock copolymers are similar to typical AB diblock copolymers but have an added transition region between the two blocks which changes gradually in composition from pure A to pure B. This tapered region can be varied from 0% (true diblock) to 100% (gradient copolymer) of the polymer length, and this allows some control over the microphase separated domain spacing and other material properties. We perform molecular dynamics simulations of linearly tapered block copolymers with tapers of various lengths, initialized from fluids density functional theory predictions. To investigate the effect of sequence dispersity, we compare systems composed of identical polymers, whose taper has a fixed sequence that most closely approximates a linear gradient, with sequentially disperse polymers, whose sequences are created statistically to yield the appropriate ensemble average linear gradient. Especially at high segregation strength, we find clear differences in polymer conformations and microstructures between these systems. Importantly, the statistical polymers are able to find more favorable conformations given their sequence, for instance, a statistical polymer with a larger fraction of A than the median will tend towards the A lamellae. The conformations of the statistically different polymers can thus be less stretched, and these systems have higher overall density. Consequently, the lamellae formed by statistical polymers have smaller domain spacing with sharper interfaces

    Does deterministic coexistence theory matter in a finite world?

    Get PDF
    Contemporary studies of species coexistence are underpinned by deterministic models that assume that competing species have continuous (i.e., noninteger) densities, live in infinitely large landscapes, and coexist over infinite time horizons. By contrast, in nature, species are composed of discrete individuals subject to demographic stochasticity and occur in habitats of finite size where extinctions occur in finite time. One consequence of these discrepancies is that metrics of species' coexistence derived from deterministic theory may be unreliable predictors of the duration of species coexistence in nature. These coexistence metrics include invasion growth rates and niche and fitness differences, which are now commonly applied in theoretical and empirical studies of species coexistence. In this study, we tested the efficacy of deterministic coexistence metrics on the duration of species coexistence in a finite world. We introduce new theoretical and computational methods to estimate coexistence times in stochastic counterparts of classic deterministic models of competition. Importantly, we parameterized this model using experimental field data for 90 pairwise combinations of 18 species of annual plants, allowing us to derive biologically informed estimates of coexistence times for a natural system. Strikingly, we found that for species expected to deterministically coexist, community sizes containing only 10 individuals had predicted coexistence times of more than 1000 years. We also found that invasion growth rates explained 60% of the variation in intrinsic coexistence times, reinforcing their general usefulness in studies of coexistence. However, only by integrating information on both invasion growth rates and species' equilibrium population sizes could most (>99%) of the variation in species coexistence times be explained. This integration was achieved with demographically uncoupled single-species models solely determined by the invasion growth rates and equilibrium population sizes. Moreover, because of a complex relationship between niche overlap/fitness differences and equilibrium population sizes, increasing niche overlap and increasing fitness differences did not always result in decreasing coexistence times, as deterministic theory would predict. Nevertheless, our results tend to support the informed use of deterministic theory for understanding the duration of species' coexistence while highlighting the need to incorporate information on species' equilibrium population sizes in addition to invasion growth rates

    Relative Permeability Experiments of Carbon Dioxide Displacing Brine and Their Implications for Carbon Sequestration

    Get PDF
    To mitigate anthropogenically induced climate change and ocean acidification, net carbon dioxide emissions to the atmosphere must be reduced. One proposed option is underground CO2 disposal. Large-scale injection of CO2 into the Earth’s crust requires an understanding of the multiphase flow properties of high-pressure CO2 displacing brine. We present laboratory-scale core flooding experiments designed to measure CO2 endpoint relative permeability for CO2 displacing brine at in situ pressures, salinities, and temperatures. Endpoint drainage CO2 relative permeabilities for liquid and supercritical CO2 were found to be clustered around 0.4 for both the synthetic and natural media studied. These values indicate that relative to CO2, water may not be strongly wetting the solid surface. Based on these results, CO2 injectivity will be reduced and pressure-limited reservoirs will have reduced disposal capacity, though area-limited reservoirs may have increased capacity. Future reservoir-scale modeling efforts should incorporate sensitivity to relative permeability. Assuming applicability of the experimental results to other lithologies and that the majority of reservoirs are pressure limited, geologic carbon sequestration would require approximately twice the number of wells for the same injectivity

    Factors associated with recovery from paraplegia in dogs with loss of pain perception in the pelvic limbs following intervertebral disk herniation

    Get PDF
    Abstract OBJECTIVE To investigate associations between recovery of locomotion and putative prognostic factors in dogs with loss of deep pain perception in the pelvic limbs caused by intervertebral disk herniation (IVDH). DESIGN Prospective cohort study. ANIMALS 78 client-owned dogs evaluated for IVDH that underwent spinal decompression surgery. PROCEDURES Dogs with complete loss of deep pain perception in the pelvic limbs and tail underwent routine examinations, advanced imaging, and spinal decompression surgery in accordance with standards of practice and owner consent. For each dog, information was prospectively collected on duration of clinical signs prior to onset of paraplegia; delay between onset of paraplegia and initial referral evaluation; date of recovery of locomotion, death, or euthanasia (3-month follow-up period); and whether dogs had received corticosteroid drugs before surgery. Severity of spinal cord compression at the lesion epicenter was measured via CT or MRI. RESULTS 45 of 78 (58%) of dogs recovered the ability to ambulate independently within 3 months after spinal decompression surgery. No evidence of prognostic value was identified for any of the investigated factors; importantly, a greater delay between onset of paraplegia and referral evaluation was not associated with a poorer prognosis. CONCLUSIONS AND CLINICAL RELEVANCE In this group of dogs with IVDH, immediacy of surgical treatment had no apparent association with outcome. The prognosis for recovery may instead be strongly influenced by the precise nature of the initiating injury.</jats:p

    Effect of sequence dispersity on morphology of tapered diblock copolymers from molecular dynamics simulations

    Get PDF
    Tapered diblock copolymers are similar to typical AB diblock copolymers but have an added transition region between the two blocks which changes gradually in composition from pure A to pure B. This tapered region can be varied from 0% (true diblock) to 100% (gradient copolymer) of the polymer length, and this allows some control over the microphase separated domain spacing and other material properties. We perform molecular dynamics simulations of linearly tapered block copolymers with tapers of various lengths, initialized from fluids density functional theory predictions. To investigate the effect of sequence dispersity, we compare systems composed of identical polymers, whose taper has a fixed sequence that most closely approximates a linear gradient, with sequentially disperse polymers, whose sequences are created statistically to yield the appropriate ensemble average linear gradient. Especially at high segregation strength, we find clear differences in polymer conformations and microstructures between these systems. Importantly, the statistical polymers are able to find more favorable conformations given their sequence, for instance, a statistical polymer with a larger fraction of A than the median will tend towards the A lamellae. The conformations of the statistically different polymers can thus be less stretched, and these systems have higher overall density. Consequently, the lamellae formed by statistical polymers have smaller domain spacing with sharper interfaces
    corecore