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Tapered diblock copolymers are similar to typical AB diblock copolymers but have an added tran-
sition region between the two blocks which changes gradually in composition from pure A to pure
B. This tapered region can be varied from 0% (true diblock) to 100% (gradient copolymer) of the
polymer length, and this allows some control over the microphase separated domain spacing and other
material properties. We perform molecular dynamics simulations of linearly tapered block copoly-
mers with tapers of various lengths, initialized from fluids density functional theory predictions. To
investigate the effect of sequence dispersity, we compare systems composed of identical polymers,
whose taper has a fixed sequence that most closely approximates a linear gradient, with sequen-
tially disperse polymers, whose sequences are created statistically to yield the appropriate ensemble
average linear gradient. Especially at high segregation strength, we find clear differences in polymer
conformations and microstructures between these systems. Importantly, the statistical polymers are
able to find more favorable conformations given their sequence, for instance, a statistical polymer
with a larger fraction of A than the median will tend towards the A lamellae. The conformations of
the statistically different polymers can thus be less stretched, and these systems have higher overall
density. Consequently, the lamellae formed by statistical polymers have smaller domain spacing with
sharper interfaces. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972141]

INTRODUCTION

Tapered AB block copolymers have blocks of pure A
and B monomers on each end of the polymer, separated
by a transition block or “taper” whose composition changes
smoothly from purely A to purely B monomers (or from B to A
monomers for inverse tapers) along its length. A major driver
of interest in such systems is that, by adjusting the length of the
tapered region, one can tune microphase behavior and physical
properties such as glass transition temperature (Tg) and order-
disorder transition temperature (TODT), as has been found in
experiments by multiple groups.1–17 As would be intuitively
expected, adding a taper generally increases the miscibility
of the system, effectively decreasing the segregation strength
(quantified by χN, the Flory χ parameter times polymer length)
and widens the interfacial regions of the microphase separated
structures. Furthermore, tapering has been shown to change the
microphase behavior and dynamics versus typical diblocks in
ways that cannot be explained by a simple shift in effective
segregation strength.16–20 The promise of tapered polymers
was highlighted in a recent work showing that intermediate
length tapers can enhance polymer dynamics, improving ion
transport in lithium ion battery electrolyte materials.21

Simulation and theory can provide insight into the
physical origins of such behavior and potentially pro-
vide guidance in implementing this new control parameter

a)E-mail: hall.1004@osu.edu

effectively.17–20,22 Interestingly, self-consistent field theory
(SCFT) predicted that short to medium length normal taper-
ing significantly increases the region of the phase diagram
where the bicontinuous double gyroid microphase is favored.18

Coarse-grained molecular dynamics (MD) simulations started
from a random initial configuration generally microphase sep-
arated into the same phases predicted by SCFT.19 A combina-
tion of fluids density functional theory (fDFT)23–25 and MD
simulations were used to further explore the effects of taper-
ing, including the effects on polymer diffusion.19,20 Recently,
Sethuraman and Ganesan also used MD simulations to study
tapered copolymers; they showed how dynamic properties
depend on both effective χ and the difference in A and B seg-
mental mobility.22 In both the aforementioned SCFT and fDFT
works, each polymer in a given system had an identical com-
position that approximates a linear gradient (a particular fixed
sequence of A and B beads for the fDFT or alternating A and
B blocks of varying lengths for SCFT). Meanwhile, the MD
simulations used weighted random sequences such that indi-
vidual polymers are different, but the overall ensemble average
shows a linear gradient in the taper. Of course, some degree
of sequence dispersity also exists in experimentally synthe-
sized polymers.26 One way tapered copolymers can be formed
experimentally is via a semi-batch process of many sequential
living anionic polymerization steps; during each step the two
different types of monomers are injected in different amounts
and are polymerized approximately randomly.4,5,16,27–32 A
very recent work showed an excellent agreement between
tapered copolymer density profiles from experiment and
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fDFT (with a fixed sequence),17 though comparisons between
experiment and theory with respect to order-disorder transi-
tions or dynamics have not been as specific and precise.

Though the strategy of using tapering to tune material
properties hinges on a detailed understanding and control
over the effects of polymer sequence on overall behavior,
none of these prior studies have specifically addressed the
discrepancy in sequence dispersity between the theoretical,
simulation, and experimental tapered systems. Meanwhile, for
the related gradient copolymer systems that have been studied
more frequently in the literature, sequence dispersity is known
to affect both the order-disorder transition and microphase
domain spacing, among other properties.33–36 In the current
study, we are motivated to quantify the effects of sequence
dispersity for tapered systems. We aim to show both: to what
extent the theoretical work employing fixed sequences is rep-
resentative of statistical sequence systems and, more generally,
how sequence dispersity affects the microphase structure.

The literature showing the effect of sequence dispersity
for gradient copolymers builds on the significant body of work
that has been accumulated for many decades regarding the
effects of molecular weight polydispersity. For a few examples
of theory and simulation work in this area, molecular weight
polydispersity for diblocks is explored in Ref. 37 and the effect
of sequential polydispersity of graft random copolymers is
shown in Refs. 38 and 39. Additionally, Refs. 40 and 41 discuss
how blockiness or dispersity in block sequence impacts the
phase behavior of random block copolymer melts.

Of more specific interest is prior work on the effects of
sequence dispersity for gradient copolymers; when the com-
position gradient is linear, these systems correspond to the
limit of 100% tapering.33–35 Ref. 34 employed Monte Carlo
(MC) simulations to study gradient copolymers in solution.
The polymer sequences could be either “quenched” (sequen-
tially polydisperse), in which each monomer could be A or
B with a probability specified by a linear composition pro-
file, or “annealed” (sequentially monodisperse), in which each
monomer is partially A and B with a fraction determined by
the same linear composition (the pairwise interaction strengths
were adjusted according to the fractional monomer type). The
sequentially monodisperse system required a higher interac-
tion strength to form micelle-like structures. More recently,
Shi and co-workers studied linear gradient copolymer melts,
with different amounts of compositional polydispersity, using
SCFT.33 They also find the interaction strength required for
microphase separation is higher for the monodisperse sys-
tem. Interestingly, while the compositionally monodisperse
systems have smaller lamellar spacing near the critical point,
with increasing χN their spacing increases more than that
of polydisperse systems. Thus, strongly segregated monodis-
perse systems have a larger domain spacing than polydisperse
systems.

Ganesan and coworkers also recently studied a range of
copolymers with linear or hyperbolic composition gradients,
some of which are similar to the tapered composition pro-
files considered here. They considered the effects of both the
local sequence blockiness (average length of continuous A or
B monomer regions) and compositional polydispersity (vari-
ance in the local fraction of A across all chains in the system,

considering a given point along the chain length).35 Using
self-consistent Brownian dynamics (SCBD) simulations, they
showed that both kinds of sequential polydispersity increase
the size of the microphase separated region of the phase dia-
gram versus that expected for monodisperse systems. The
effect of sequence dispersity was more important for systems
with a more gradual change in composition across the polymer
length.

In this study we consider linearly tapered copolymers and
focus on one aspect of compositional dispersity: whether poly-
mers in the system all have the same sequence that approxi-
mates a linear taper or all sequences are statistically determined
with a linearly weighted probability in the tapered region. In
the section titled Methods, we describe our detailed simu-
lation methodology including how we defined the fixed and
statistical sequence systems. In the results and discussion,
we discuss how different the interfacial sharpness of lamel-
lae and other structural, conformational properties are in the
two systems with various taper lengths. These differences will
be discussed by comparing to the existing simulation or theo-
retical results. Finally we conclude with summarizing remarks
in the conclusions.

METHODS

We use a simple Kremer-Grest bead-spring model of lin-
ear polymer chains with 40 monomer beads per chain that can
be of type A or B.42 Systems are symmetric with an equal
amount of A and B beads overall, and the only microphase
separated structure considered here is lamellae. Thus, diblock
copolymers (0% tapers) consist of 20 A beads followed by
20 B beads. Tapered chains are composed of an A block, a
tapered region whose composition changes approximately lin-
early along its length from pure A to pure B (or from B to A
for inverse tapers), then a B block. Specifically, 30%, 50%,
and 70% normal tapers and 30% inverse tapers are consid-
ered. The statistical or sequentially polydisperse systems are
created as in our previous MD studies.19,20 Specifically, each
monomer site in the tapered region has a linearly weighted
random chance of being either type A or B such that the
ensemble average composition shows an ideal linear gradi-
ent in the tapered region. Each monomer site is allocated with
[(i � 0.5)/Nt] × 960 number of A monomers, where i is the
site number along the taper, Nt is the number of beads in the
tapered block, and 960 is the total number of polymers, and
which beads appear on which polymer chains is determined
through random shuffling by site. In such systems, individ-
ual polymer chains have distinct sequences of beads and the
fraction of A beads on a given chain ( f A) is not necessarily
0.5. For compositionally monodisperse systems, a single, fixed
sequence of A and B is used for all chains in the simulation; see
Figure 1 for the particular sequences considered in this paper.
As shown in Figure 2, the chosen sequences best match a per-
fectly linear taper in terms of the cumulative number of A
beads as a function of distance along the taper, as in our prior
fDFT work.17,20

Monomers are bonded using the finitely extensible non-
linear elastic (FENE) potential, Equation (1), with a spring
constant of k = 30ε/σ2 and maximum length of R0 = 1.5σ to
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FIG. 1. Monomer sequences employed for fixed sequence systems: (a) 30%
taper, (b) 50% taper, (c) 70% taper, and (d) 30% inverse taper. All individually
written As and Bs are considered part of the taper; parentheses are used to
indicate the pure monomer blocks.

appropriately avoid chain crossing or breaking,42

UFENE (r) = −0.5kR0
2ln(1 −

r2

R0
2

). (1)

The purely repulsive part of the Lennard-Jones (LJ) potential
(the standard LJ potential cutoff and shifted to 0 at rc = 21/6σ)
is used for all pairwise interactions,
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]
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where εij is the interaction strength andσij is the length scale of
interaction between monomers i and j. All σij = 1.0σ, and εij

is equal for like monomer interactions (εAA = εBB = 1.0 ε); σ
and ε are used as our units for length and energy, respectively.

We considered εAB values of 3.0, 4.0, 5.0, 6.1, 7.4, 9.0,
and 11.9 for normal tapers and 6.1, 7.0, 7.4, 8.0, 9.0, 10.0,
10.6, 11.0, 11.5, and 11.9 for inverse tapers, depending on the
system. Some of these values were used in our prior work,
and the chosen values are more closely spaced for inverse
tapers to show more clearly their lamellar spacing as a func-
tion of εAB, which was shown to change subtly and sometimes
non-monotonically in our prior work.18 At the highest value
considered (11.9), all systems are clearly microphase separated
to lamellae. Some systems tend to disorder at the lower values

FIG. 2. Expected cumulative count of B beads found along the tapered region,
relative to the expected value along a fully random sequence with equal
amounts of A and B, ∆, plotted as a function of site number along the chain
and shifted such that 0 represents the count to the center of the taper. The
tapered region is 30%, 50%, or 70% of the total length of 40 beads, as labeled.
Points connected by dashed lines show the depletion of A beads for the chosen
fixed sequences as shown in Figure 1, while smooth lines show the expected
value for an ideal linear gradient, which is a parabola centered in the middle
of the taper. The fixed sequences were chosen to best match the ideal linear
gradient.

of εAB; we report results below only for systems that keep their
8-layered lamellar structure over the whole simulation time of
230 000τ, based on visual inspection. Specifically, lamellae
did not appear stable for εAB = 4.0 for 70% normal tapers and
for εAB = 7.0 for 30% inverse tapers with fixed sequences,
and these and lower values of εAB for each system are not
included below. A simple linear mapping to χ as reported in
Ref. 20 suggests that χ = 0.39(εAB − 1). This implies that
χN ≈ 31 and 170 for the lowest and highest considered values
of εAB = 3.0 and 11.9, respectively. However, both Refs. 20
and 43 suggest that at large repulsive interaction strengths, the
mapping is no longer linear and the effective χ is somewhat
lower than expected. While one can perform a more detailed
mapping, for clarity we discuss our results below simply with
respect to the interaction parameter εAB.

All simulations are initialized in lamellar structures to
avoid the need to simulate over the long time scales relevant
to microphase separation. Each system contains 8 lamellae,
aligned in the z direction and with equal numbers of polymers
in each. The initial polymer configurations are created based on
fDFT results for the analogous model system (with the same
sequence as used in the fixed sequence MD systems) at the
same εAB. Briefly, polymers are grown via a pseudo-random
walk starting at the interface, where the likelihood of placing
a monomer at a particular z value depends on its fDFT density
profile; the details are identical to those reported in Ref. 20.
All systems have 960 polymers in total, thus 120 polymers per
lamellar interface.

Starting from the initial fDFT-informed lamellar config-
uration, the simulation proceeds with a brief push-off with a
soft potential, A [1 + cos (πr/rc)] ; r < rc, where A is linearly
increased from 0 to 50 over 11.5τ, to remove any overlaps of
monomers before the repulsive LJ potential is turned on. The
system is then equilibrated at constant pressure of 5.0 ε/σ3,
which gives the bead number density (ρ) = 0.85σ−3 in the bulk
homopolymer and is common in repulsive Kremer-Grest simu-
lations, with a Nosé-Hoover barostat with damping parameter
of 1000τ. The box size is coupled in x and y directions such
that the box has a square cross section, and the box can adjust
size independently in the z direction (perpendicular to the
lamellae), allowing the system to reach its proper equilibrium
lamellar spacing. The total simulation time is 230 000τ for
all systems, the first half of which is considered the equilibra-
tion time; for reference, for diblock copolymers at εAB = 6.1,
the lamellar spacing fluctuates around a constant value after
about 11 500τ, which is 10% of the equilibration time. In our
previous study, we determined the characteristic time for the
end-to-end vector autocorrelation function to relax within the
lamellae (excluding the part of the autocorrelation due to the
alignment within the lamellar structure) ranged from 1110τ
for diblocks to 1640τ for 30% inverse tapers at εAB = 6.1.19

Though the dynamical data in Ref. 19 were taken in the NVT
ensemble and only for statistical sequences, we expect that
the times for the current fixed and statistical sequences in the
NPT ensemble would be similar. Thus, our equilibration time
is about 70 times this end-to-end relaxation time for the sys-
tems with the slowest dynamics (30% inverse tapers). Data
are saved every 115τ for the last 115 000τ for structural anal-
ysis. We average over the last 30 snapshots 115τ apart for the
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calculation of density profiles and 20 snapshots each 5750τ
apart for other quantities such as lamellar spacing and poly-
mers’ mean-squared radius of gyration.

We report results in terms of standard reduced units of σ
for length, ε for energy, and m for mass; all monomers have
unit mass (1.0 m). The reduced unit of time is τ = σ (m/ε)1/2.
The system temperature is kept constant at T = 1.0 ε/kB using
a Langevin thermostat with damping parameter 1 τ. We use
the open-source LAMMPS program to perform the simula-
tions, with periodic boundary conditions and a timestep of
0.0115 τ.44

RESULTS AND DISCUSSION

As would be intuitively expected, the differences between
fixed and statistical sequence systems are generally small com-
pared to the differences between systems with different taper
lengths. This is shown visually in Figure 3, which presents the
snapshots of all systems at the highest interaction strength con-
sidered. The increased interfacial mixing that is known to occur
with tapering is apparent in these snapshots, as is the typical
decrease in lamellar spacing with tapering. Relatively modest
effects of sequence are also seen; specifically, fixed sequence
systems appear to show slightly more interfacial mixing and
about the same or a slightly larger lamellar spacing than their
statistical sequence analogs. Below we compare density pro-
files, lamellar spacing, and other quantities to further explore
these differences.

To provide context for understanding the differences in
behavior between statistical and fixed sequence systems, we
first note some inherent differences in the two representations
of the tapered region. As shown in Figure 2, near either the pure
A or pure B end of the taper, the expected amount of opposite
type beads is small. Thus, in the appropriate fixed sequence
representation as shown in Figure 1, the ends of the taper look
like the pure block to which they are connected. If the tapered
region were measured as the length between the first beads on
either side that are different from the pure block beads, the fixed
sequence’s tapered region would appear to be only 15% of the
polymer length for the 30% tapered system. This makes the
transition region appear shorter, with a sharper gradient than
a true linear taper. Meanwhile, for statistical systems, indi-
vidual polymer sequences could have more or less effective
taper length, but the ensemble average gives a linear taper of
the proper length. In contrast, the fixed sequence inverse taper
may effectively act as a longer inverse taper than its statistical
analog, because it always contains multiple A beads in a row
connected directly to the B pure block, but statistical sequence
systems sometimes include a B bead in the same region. The
amount and variability of A–B bonds per chain also differs
for these systems, as reported in Table I. The fixed sequences
switch frequently between A and B monomers throughout the
tapered region, while statistically determined sequences some-
times contain many A or B monomers in a row, and on average
have fewer A–B bonds per chain. If this bonding effect was
the only difference between the systems, the density of the
interface for the fixed sequences would be lower because the
A–B interactions are unfavorable. Of course, there are many
more intermolecular than bonded interactions in the system, so

FIG. 3. Snapshots of 3 layers of lamellae, showing the two polymer types in
red and blue, for all types of copolymers considered at εAB = 11.9. From top to
bottom are the (a) diblock, ((b) and (c)) 30% fixed/statistical sequence normal
tapers, ((d) and (e)) 50% fixed/statistical sequence normal tapers, ((f) and (g))
70% fixed/statistical sequence normal tapers, ((h) and (i)) 30% fixed/statistical
sequence inverse tapers. For each system two selected polymer chain config-
urations are highlighted in the foreground, and these configurations have been
smoothed by averaging two snapshots 115τ apart in time.
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TABLE I. Average number of A–B bonds per polymer for each type of
copolymer considered. For statistical systems, these values were found by
counting bonds in the actual simulated systems formed by the random pro-
cess described in the text; to the two significant figures reported here, the
calculated expected value of A–B bonds based on this process is the same.

System type A–B bonds Standard deviation

Diblock 1.0 0.0
30% normal taper, statistical 4.1 1.7
30% normal taper, fixed 7.0 0.0
50% normal taper, statistical 6.7 2.3
50% normal taper, fixed 11.0 0.0
70% normal taper, statistical 9.4 2.7
70% normal taper, fixed 13.0 0.0
30% inverse taper, statistical 5.9 1.7
30% inverse taper, fixed 9.0 0.0

this is likely not a dominant effect for the system overall. The
number of A–B bonds also gives a measure of the blockiness
(the likelihood of switching from a region of A to a region of
B is related to the average size of such regions). In this respect,
the blockiness is lower for fixed sequences based on Table I.
As noted above, work by Ganesan et al. showed differences in
behavior for copolymer systems with different blockiness dis-
tributions; they also noted that a weaker gradient (more weakly
changing composition as a function of length along the chain)
should be expected to lead to a wider distribution in local
blockiness.35

Figure 4 shows density profiles (the average A, B, and
total monomer densities as a function of distance across one
lamellae, Lz) for all tapered systems at the lowest and highest
segregation strength considered. The calculation of the den-
sity profiles is done by binning the monomers as a function

FIG. 4. Lamellar density profiles for ((a) and (b)) 30% tapers, ((c) and (d)) 50% tapers, ((e) and (f)) 70% tapers, and ((g) and (h)) 30% inverse tapers at low and
high εAB. A, B, and total monomer density are shown in red, blue, and black, respectively; fDFT results are shown with solid lines without symbols, and MD
results are shown with symbols connected by thin dashed (fixed sequence) or solid (statistical sequence) lines. For each taper length, we show the lowest εAB
considered that was stable for both fixed and statistical sequences at top and εAB = 11.9 at bottom, as labeled.

of their z value versus the average center of mass of the A
lamellae (assumed to be equally spaced within the box), as
described in detail in Ref. 19. The fDFT results at the same
interaction parameter are shown for comparison, and always
appear to be more strongly segregated than the MD systems.
This difference is largely due to the lack of precise map-
ping of χN between the models; as noted above and in our
prior work, the effective χN for the MD systems increases
sublinearly as the repulsive A–B interaction strength εAB is
increased. However, the mean field treatment of interactions in
fDFT means that increasing εAB does approximately linearly
increase χN.

As expected given the unfavorable interfacial interactions,
there is a lower total monomer density near the interface than in
the center of a lamella; the depth and the width of the region of
decreased density, as well as the maximum local density away
from the interface, vary among these systems. This leads to
a noticeable difference in overall average density, as given in
Figure 5(a) for all systems as a function of εAB. Figure 5(b)
shows the domain spacing Lz (note that because the x axis
in Figure 4 is scaled by Lz, the sometimes significant differ-
ences in domain spacing between systems are not shown in
Figure 4). For all systems, total density decreases and domain
spacing increases with increasing unfavorable A–B interac-
tion strength. The increase in domain spacing with segregation
strength is well-known for diblock copolymers, and the effects
of tapering were discussed in our prior work. In particular, we
reported that the spacing does not increase as quickly with seg-
regation strength for tapers as it does for diblocks.18–20 Also,
we showed that for long enough inverse tapers, Lz can be rel-
atively constant as a function of εAB or χN due to the chain
stretching effect being canceled by the inverse tapers’ propen-
sity to “fold” back and forth across the interface at high enough
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FIG. 5. (a) Bead number density and (b) lamellar spacing (Lz) versus εAB

for various taper lengths for fixed (dashed lines) and statistical (solid lines)
sequence systems at various taper lengths as labeled. The solid black line
corresponds to the diblock (0% taper) for reference. The error bars are standard
deviations across the 20 snapshots averaged.

χN (the A side of the inverse taper sits in the A domain and the
B side sits in the B domain, decreasing the end-to-end distance
of the polymer). We observe the same qualitative trends for
systems with and without sequential polydispersity. However,
fixed sequences show significantly lower system density com-
pared to their sequentially polydisperse counterparts, and this
effect is slightly magnified as the normal taper length increases.
The gap between fixed and statistical system densities for 30%
inverse tapers is more than that for 30% normal tapers, which
is intuitive given that a 30% inverse taper changes the system,
compared to the analogous diblock, more than a 30% normal
taper. The amount of tapering and resulting polymer conforma-
tions and intermolecular interactions play an important role, in
the sense that the density differences cannot be explained only
by the differences in number of A–B bonds shown in Table
I. For instance, the 50% fixed sequence normal taper system
has more A–B bonds but also a higher density than the 70%
statistical sequence normal taper system.

While the size of the effect of sequential polydispersity
on density is relatively similar as a function of segregation
strength, the size and even direction of the effect of sequential
polydispersity on domain spacing can change with segregation
strength. Specifically, at high segregation strengths, the fixed

FIG. 6. Comparison of chain conformational properties, (a) mean squared
radius of gyration

(〈
Rg

2
〉)

and (b) shape anisotropy
(〈
κ2

〉)
, for fixed (dashed

lines) versus statistical (solid lines) sequence systems with various taper
lengths as labeled. The solid black line corresponds to the diblock (0% taper)
for reference. For each point, the standard deviations across the 20 snapshots
averaged are within ±0.26σ2 for

〈
Rg

2
〉

and ±0.01 for
〈
κ2

〉
.

sequence systems with significant tapering effects (50% and
70% normal tapers and 30% inverse tapers) show larger Lz

than the sequentially polydisperse systems. However, for 30%
normal tapers or for all systems at low segregation strength,
the difference between fixed and statistical sequence systems’
Lz is small. At first glance, this may seem at odds with the
observation above that the difference between fixed and sta-
tistical sequences’ density profiles is more prominent at lower
segregation strengths. Importantly, the effect on density pro-
files (which was shown in Figure 4 with the z-axis normalized
by the domain spacing) does not cause the change in domain
spacing; instead, both effects occur together in response to
differences between the systems. If a given sequentially poly-
disperse chain can more easily reduce A–B interactions by
assuming a favorable conformation and location in the lamel-
lae based on its sequence, this could lead to either a sharper
interfacial profile or a more coiled conformation (predicting a
smaller domain spacing), or both, depending on both entropic
and enthalpic considerations.

For further understanding of how the polymer confor-
mations are different for these systems, we now analyze the
size and shape of the chains. Specifically, we report the mean
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squared radius of gyration
(〈

Rg
2
〉)

and shape anisotropy
〈
κ2

〉
,

as defined by45,46

κ2 = 4 − 12
λ1λ2 + λ1λ3 + λ2λ3

(λ1 + λ2 + λ3)2
,

where each λ is an eigenvalue of the moment of inertia tensor.
The value of κ2 can range from 0 for a perfect sphere to 1
for a perfect rod (i.e., all monomer beads lying along a single
line). Figure 6 shows that the fixed sequence chains are typ-
ically more elongated or rod-like on average than statistical
sequence chains, as implied by their higher radius of gyration
and shape anisotropy. The differences are more significant at
higher segregation strengths and for larger normal tapers or for
inverse tapers, which all follow closely the trends in domain
spacing discussed above.

Where comparable, these results are generally in line with
the prior work on polydispersity in length, composition, and
blockiness for diblock and gradient copolymers. Most well
studied previously, with both simulations and experiments, is
that χODT for diblock copolymers decreases as the molecu-
lar weight polydispersity increases, or as the distribution of
polymer molecular weight gets wider.36 Compositional poly-
dispersity for diblock copolymers was also found to have a
similar effect on χODT.35,36 Though we do not attempt to deter-
mine the critical point, we also observe that systems appear
to microphase separate more easily and more cleanly (with
sharper interfaces) when sequential polydispersity is included.
We generally predict larger effects of sequential polydispersity
with a larger fraction of normal tapering, which is intuitive
as the larger fraction of gradient for the 50% and 70% nor-
mal tapered chains leads to a wider distribution of blockiness
and volume fractions of A segments among chains in the sta-
tistical system, as was noted by Ganesan et al. and in our
prior work.19,35 We also observe similar trends in density pro-
files and domain spacing as prior theoretical work on gradient
copolymers. Specifically, Jiang et al. also showed that com-
positional polydispersity sharpened the interface and that the
difference was less significant for more highly segregated sys-
tems.33 Another interesting feature, shown for our systems in
Figures 5(b) and 6, is that a transition occurs at low segre-
gation strengths for some systems, where the results of the
fixed and statistical sequence systems cross with respect to
their domain spacing, radius of gyration, and shape anisotropy.
This effect is small but apparent, especially for the 50% normal
taper. Specifically, Lz, R 2

g , and κ2 are typically all larger for
fixed sequence systems at high segregation strength, but the
reverse is true for some systems at low segregation strength;
this implies that the fixed sequence stretch/elongate more than
the statistical sequence polymers do as segregation strength
is increased. Similarly, Jiang et al. showed that a monodis-
perse system has a smaller domain spacing at low segregation
strength near the critical point, but as the system gets more
segregated, the monodisperse polymers stretch quickly while
the polydisperse system chains stretch less and eventually have
a smaller domain spacing.

The salient difference between fixed and statistical
sequence systems is that each polymer in the fixed sequence
system is identical, while the varied systems include a mix-
ture of polymers that are individually different. Like polymers

FIG. 7. Normalized density profile of A monomers for the statistical (solid)
and fixed (dashed) sequence systems of (a) 30%, (b) 50%, (c) 70% normal
tapers, and (d) 30% inverse tapers at εAB = 11.9. For the statistical sequences,
the A beads are separated into three groups based on the amount of A beads
in the chain to which they belong; the three solid lines are for A monomers
on chains with more than (red line), equal to (solid black line), or less than
the expected number of A beads. The density is normalized by the fraction of
chains of each type and the bulk density of each system which is same as what
is shown in Figure 5(b). The data were generated by binning in increments of
z/Lz = 0.05; data points are connected with straight lines for clarity.

with other types of polydispersity, polymers in sequentially
polydisperse systems can find more favorable conformations
and locations within the lamella depending on their particu-
lar sequences. To show the extent to which this occurs, we
plot density profiles for three types of chains in the statistical
sequence ensemble (those with more than, equal to, or less
than the expected value of twenty A beads on their chain) in
Figure 7. For 30% tapers, as an example, if a polymer has 7 A
and 5 B monomers (or 8 A and 4 B, etc.) in its tapered block,
then it is assigned to the “>50% A” group; if it has 5 A and
7 B monomers (or 4 A and 8 B, etc.), then it is in the “<50%
A” group; and if it has 6 A and 6 B monomers, then it is in the
“50% A” group, which are represented as red, blue, and black
colored lines in the figure. Monomers on chains with additional
A beads tend towards the middle of the A lamellae, while those
on chains with fewer A beads tend towards the interface. Even
considering just monomers on chains which have equivalent
amounts of A and B beads, there would be a sharper interfa-
cial region within the statistical sequence system than in the
sequentially monodisperse system. Overall, this clearly shows
the expected effect that in sequentially polydisperse systems,
chains are able to find more favorable conformations and loca-
tions within the lamellae based on their specific sequences, and
this effect is somewhat larger as taper length is increased.

CONCLUSIONS

At both high and low segregation regimes and with dif-
ferent amounts of tapering, sequential polydispersity leads
to a higher maximum purity in the middle of the lamellar
domain and a narrower interfacial region. That is, a system
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of chains with statistically determined sequences microphase
separates more strongly than a system of identical chains with a
sequence chosen to represent the average expected sequence.
Sequential polydispersity also increases system density, and
there is a relatively small effect of sequential polydispersity
on domain spacing, which is more significant at large segrega-
tion strengths. Generally, these effects are stronger for larger
normal taper lengths and for inverse versus normal tapers.

The effects of sequential polydispersity can be under-
stood by considering that certain chains in the varied sequence
ensemble may behave differently than others; for instance,
those with more A than average tend to segregate towards the
A side of the lamellae, leading to the statistical sequence to
microphase segregate more easily and more cleanly. We also
noted that the sequences of A and B chosen to best represent the
linear tapers effectively have a shorter transition region with
a sharper change in composition than a perfect linear taper,
and these fixed sequences contain more A–B bonds along the
chain than statistical sequences. These differences arise from
our simple choice of model (versus, for instance, a model in
which monomer properties can be mixed such that individual
beads are sometimes partially A and partially B), and we expect
the effects of such differences are relatively small. We also note
that this paper considered short chain lengths, relative to many
experimental systems. With short chains, monomer scale vari-
ations of the fixed sequence or between different chains in the
statistical system are relatively significant—this would tend to
have accentuated the sequence effects observed here.
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