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Abstract

Contemporary studies of species coexistence are underpinned by deterministic

models that assume that competing species have continuous (i.e., noninteger)

densities, live in infinitely large landscapes, and coexist over infinite time

horizons. By contrast, in nature, species are composed of discrete individuals

subject to demographic stochasticity and occur in habitats of finite size

where extinctions occur in finite time. One consequence of these discrepancies

is that metrics of species’ coexistence derived from deterministic theory

may be unreliable predictors of the duration of species coexistence in nature.

These coexistence metrics include invasion growth rates and niche and fitness

differences, which are now commonly applied in theoretical and empirical

studies of species coexistence. In this study, we tested the efficacy of

deterministic coexistence metrics on the duration of species coexistence in a

finite world. We introduce new theoretical and computational methods to

estimate coexistence times in stochastic counterparts of classic deterministic

models of competition. Importantly, we parameterized this model using

experimental field data for 90 pairwise combinations of 18 species of annual

plants, allowing us to derive biologically informed estimates of coexistence

times for a natural system. Strikingly, we found that for species expected to

deterministically coexist, community sizes containing only 10 individuals had

predicted coexistence times of more than 1000 years. We also found that inva-

sion growth rates explained 60% of the variation in intrinsic coexistence times,

reinforcing their general usefulness in studies of coexistence. However, only

by integrating information on both invasion growth rates and species’ equilib-
rium population sizes could most (>99%) of the variation in species coexis-

tence times be explained. This integration was achieved with demographically

uncoupled single-species models solely determined by the invasion growth

rates and equilibrium population sizes. Moreover, because of a complex rela-

tionship between niche overlap/fitness differences and equilibrium population

sizes, increasing niche overlap and increasing fitness differences did not

always result in decreasing coexistence times, as deterministic theory would

predict. Nevertheless, our results tend to support the informed use of determinis-

tic theory for understanding the duration of species’ coexistence while
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highlighting the need to incorporate information on species’ equilibrium popula-

tion sizes in addition to invasion growth rates.

KEYWORD S
annual plants, coexistence, competition, demographic stochasticity, extinction, modern
coexistence theory

INTRODUCTION

Understanding how competing species coexist is a central
problem in ecology (Chesson, 2000a; Hutchinson, 1961).
Recent theoretical progress on this problem has replaced
vague conceptualizations of coexistence requirements
with tools that allow ecologists to quantify the niche
differences that allow coexistence and the fitness differ-
ences that drive competitive exclusion (Adler et al., 2007;
Chesson, 1990, 2000a). This progress has, in turn,
motivated a large number of empirical studies to apply
tools derived from theory to quantify the drivers of species
coexistence in the field (e.g., Levine & Lambers, 2009;
Narwani et al., 2013). Importantly, however, the deter-
ministic theory on which these advances are based assumes
that competition occurs between populations whose
densities vary continuously on landscapes of infinite size
(Faure & Schreiber, 2014; Schreiber, 2017). Under these
assumptions, the influence of processes occurring as a
consequence of the discrete nature of individuals—such as
demographic stochasticity—are excluded (Hart et al., 2016;
Pande, Fung, Chisholm, & Shnerb, 2020). This generates
a fundamental disconnect between theory and reality
because, although theory predicts that coexisting species
will coexist indefinitely, in nature coexistence can only
occur over finite periods of time. How well metrics derived
from deterministic coexistence theory predict the duration
of coexistence in the discrete, finite systems of nature—the
ultimate object of study—remains largely unknown.

One of the most widely used metrics in contemporary
theoretical and empirical studies of species coexistence
is invasion growth rate (Chesson, 2000a; Grainger
et al., 2019; Hofbauer & Sigmund, 1998; Schreiber, 2000).
A metric from deterministic models, the invasion growth
rate of a species is its per-capita growth rate at vani-
shingly low densities when its competitors’ densities are
at equilibrium. For two competing species, deterministic
models predict that coexistence occurs when each species
in a competing pair has a positive long-term invasion
growth rate (Macarthur & Levins, 1967). Provided there
are no Allee effects or positive frequency dependence
at low densities (Schreiber et al., 2019), meeting this
“mutual-invasibility” criterion implies that coexistence
occurs indefinitely. Invasion analyses have been

particularly powerful in studies of species coexistence
because model-specific expressions for the invasion
growth rate can be used to derive expressions that
quantify the magnitude of niche and fitness differences
between species (Chesson, 1990, 2013; Hart et al., 2018).
Thus, the mutual invasibility criterion has become
central to much of our current understanding of species
coexistence. However, when finite populations with posi-
tive deterministic invasion growth rates are depressed to
low numbers of discrete individuals, they may still fail to
persist because the negative effects of demographic
stochasticity lead to extinction (Hart et al., 2018; Pande,
Fung, Chisholm, & Shnerb, 2020). More generally, even
when species have higher densities away from the
invasion boundary, demographic stochasticity operating
on competing populations of finite size ensures extinc-
tion in finite time (Jagers, 2010; Lande et al., 2003;
Reuter, 1961; Schreiber, 2017).

Despite the dominance of coexistence theory that
imposes continuously varying population densities
and infinitely large landscapes on a discrete, finite world,
the effect of demographic stochasticity on coexistence
is receiving greater attention (Shoemaker et al., 2020;
Vellend, 2010). Perhaps the most prominent example is
neutral theory, in which demographic stochasticity is
the sole driver of competitive dynamics between species
(Hubbell, 2001; Hubbell & Foster, 1986). Like fixation
times for neutral alleles (Ewens, 2012), neutral theory
predicts that competing species can coexist for long
periods of time when the community size is large relative
to the number of species (Hubbell, 2001). The well-known
problem with neutral theory, however, is that in empha-
sizing the role of demographic stochasticity, the theory
simultaneously excludes all deterministic processes
governing species interactions (Vellend, 2010). This
exclusion includes species-level fitness differences that
drive competitive exclusion and niche differences that
promote coexistence (Adler et al., 2007). Thus, depending
on the relative strength of these deterministic processes,
coexistence times predicted by neutral theory (i.e., by the
action of demographic stochasticity alone) will be either
significant over- or underestimates.

More recently, population theoretic studies that
incorporate demographic stochasticity into traditionally
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deterministic models of competition have begun to emerge
(Adler & Drake, 2008; Gabel et al., 2013; G�omez-Corral &
L�opez García, 2012; Kramer & Drake, 2014). These
studies first make the important point that interspecific
competitive interactions cause extinction dynamics to be
different from that predicted by single-species models,
and they also demonstrate that stochasticity causes the
identity of the winner in competition to be less than
perfectly predicted by deterministic competition-model
parameters (Gabel et al., 2013; G�omez-Corral & L�opez
García, 2012; Kramer & Drake, 2014). In addition,
and together with models of extinction processes applied
to single-species dynamics, these studies also highlight
the likely importance of variables not traditionally
considered in contemporary studies of species coexistence
(G�omez-Corral & L�opez García, 2012; Kramer &
Drake, 2014). For example, in single-species models, time
to extinction depends critically on equilibrium population
size (Boyce, 1992; Grimm & Wissel, 2004; Ovaskainen &
Meerson, 2010). If equilibrium population size is similarly
important for the duration of species’ coexistence, then
the sole focus on invasion growth rates as the primary
arbiter of coexistence may be problematic.

Despite recent progress in this area, existing studies
of the effects of demographic stochasticity on the
duration of coexistence concentrate only on cases
where competitive exclusion is deterministically ensured
(G�omez-Corral & L�opez García, 2012; Kramer &
Drake, 2014). What is missing, therefore, are assess-
ments of the duration of coexistence when coexistence
rather than exclusion is deterministically ensured and
how these durations relate to existing deterministic coex-
istence metrics (e.g., invasion growth rates, niche and
fitness differences). The latter point is particularly
important as long as the field continues to rely on deter-
ministic theory to identify coexistence mechanisms and
to interpret empirical results (Ellner et al., 2019). Indeed,
Pande, Fung, Chisholm, and Shnerb (2020) identify
inadequacies in invasion growth rates derived from
deterministic theory for predicting coexistence times of
finite populations in fluctuating environments. They
show that the environmentally dependent distribution of
species’ growth rates in fluctuating environments—not
just the average “invasion growth rate”—influences
coexistence times. Although this finding is important,
it leaves the independent effects of environmental and
demographic stochasticity on coexistence times unresolved.
For example, for coexistence mechanisms not reliant
on environmental fluctuations there is no distribution of
environmentally dependent population growth rates,
and so it remains unclear how demographic stochasticity
alone influences coexistence times. Moreover, there is
considerable empirical attention on, and support for, the

contribution to coexistence of fluctuation-independent
coexistence mechanisms (Adler et al., 2010; Chu &
Adler, 2015; Ellner et al., 2016; Godoy & Levine, 2014;
Letten et al., 2017; Li et al., 2019; Mordecai et al., 2016;
Muller-Landau & Visser, 2019; Spaak & De Laender, 2020;
Wainwright et al., 2019; Zepeda & Martorell, 2019).
For example, Zepeda and Martorell (2019) found that
the coexistence of 17 grassland species was mostly
due to large fluctuation-independent coexistence mech-
anisms. Hence, it is particularly important to under-
stand the applicability of these fluctuation-independent
mechanisms for communities influenced by demo-
graphic stochasticity in nature.

In this paper, we explore the duration of species
coexistence in discrete, finite natural systems experi-
encing demographic stochasticity. In particular, we
determine the relationship between the duration of
coexistence in the presence of demographic stochasticity
and commonly used metrics of coexistence derived
from deterministic theory. To determine these relation-
ships, we introduce the concept of the intrinsic coexis-
tence time, a multispecies analogue of Grimm and
Wissel’s (2004) intrinsic extinction time for single-species
stochastic population models. This metric corresponds to
the mean time to losing one or more of these species
after the species were coexisting sufficiently long to
exhibit relatively stationary population dynamics, that
is, quasi-stationarity. Our assessment of this metric
is based on novel mathematical and computational
methods that allow us to derive explicit relationships
between the quasi-stationary behavior of a stochastic
model and the dynamics of its deterministic model
counterpart (Faure & Schreiber, 2014). Importantly,
we ground our analytical approach using estimates of
competition model parameters from 90 pairs of annual
plant species competing on serpentine soils in the field
(Godoy et al., 2014).

MODELS AND METHODS

Models and methods overview

Our models and methods are composed of two broad
parts. First, we describe the model and its empirical
parameterization, introduce metrics of deterministic
coexistence, and describe new analytical methods for
calculating coexistence times in the presence of
demographic stochasticity. Second, we describe our
methods for answering a series of questions about the
relationship between deterministic coexistence and
stochastic coexistence times using the empirically
parameterized model.

ECOLOGY 3 of 17
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Model

We base our analysis on an annual plant competition
model (Beverton & Holt, 1957; Leslie & Gower, 1958;
Watkinson, 1980), which is well studied analytically
(Cushing et al., 2004) and does a good job of describing
competitive population dynamics in plant communities
in the field (Godoy & Levine, 2014). In the deterministic
model with no demographic stochasticity, the dynamics
of species i (i = 1 or 2) can be expressed in terms of its
density ni,t and its competitor’s density nj,t at time t:

ni,tþ1 ¼ λini,t

1þ αiini,tþαijnj,t
� �

λi�1ð Þ , where j≠ i, ð1Þ

where λi describes offspring production in the absence
of competition, and αii and αij are the competition
coefficients, which describe the rate of decline in
offspring production as conspecific and heterospecific
competitor densities increase, respectively. Including the
multiplicative factor λi � 1 in the denominator ensures
that the competition coefficients are in units of propor-
tional reductions in λi, such that when αiini + αijnj = 1,
the population stops growing. Parameterizing our model
in this way ensures that the conditions for coexistence
in our model will correspond to the classical conditions
for coexistence in the continuous-time Lotka–Volterra
competition model. In the deterministic model given by
Equation (1), offspring production and population densi-
ties take on values in the nonnegative, real numbers.

The stochastic model takes the same functional form,
but, in contrast to the deterministic model, offspring
production and population sizes Ni,t take on nonnegative
integer values. Population densities Ni,t/S are determined
by the community size S and take on nonnegative rational
values. Specifically, in the stochastic model, discrete
individuals produce random numbers of discrete offsp-
ring according to a Poisson distribution. These random
individual-level reproductive events generate demographic
stochasticity in our model. Assuming the Poisson-distributed
offspring production of individuals are independent with the
same mean as the deterministic model, the sum of these
events is also Poisson distributed, and the dynamics of our
stochastic model at the population level can be expressed as

Ni,tþ1 ¼Pois
λiNi,t

1þ αiiNi,t=SþαijNj,t=S
� �

λi�1ð Þ

 !
ð2Þ

where Pois μð Þ denotes a Poisson random variable with
mean μ:

The community size parameter S allows us to quantify
the effects of demographic stochasticity on coexistence in

landscapes of finite size. Importantly, when community
size S is sufficiently large, the dynamics of the densities
Ni,t/S of our stochastic model given by Equation (2) are
well approximated by the deterministic model given by
Equation (1) (Figure 1a–c). This justifies our analysis of
the effects of metrics of deterministic coexistence on
stochastic coexistence times. Specifically, for any pre-
scribed time interval, say [0, T], Ni,t/S is highly likely to
remain arbitrarily close to ni,t provided that S is suffi-
ciently large and Ni,0=S¼ni,0 (Appendix S2). Intuitively,
for fixed initial densities of both species, larger commu-
nity sizes correspond to greater population sizes and,
consequently, smaller stochastic fluctuations in their
densities. However, in contrast to the deterministic
model, both species eventually go extinct in finite time in
the stochastic model (Appendix S2).

Model parameterization

In our analyses, we use parameter values for our
competition model that were estimated for 90 pairwise
combinations of 18 annual plant species competing in
experimental field plots on serpentine soils in California
(Godoy et al., 2014). We used established methods to
estimate these parameters (Hart et al., 2018). Briefly, prior
to the growing season we sowed focal individuals of each
species into a density gradient of competitors. By recording
the fecundity of each focal individual near the end of the
growing season within a competitive neighborhood, we
were able to estimate per-germinant seed production in the
absence of competition and the rate of decline in seed pro-
duction as competitor density increases (Hart et al., 2018).
We also measured the germination rate of each species and
seed survival rate in the seedbank. See Godoy et al. (2014)
for the full details of our empirical and statistical methods.

These experiments were used to parameterize a model
of the form

ni,tþ1 ¼ rigini,t

1þaiigini,tþaijgjnj,t
þ 1�gið Þsini,t, ð3Þ

where ni,t+1 is the density of seeds in the soil after
seed production but prior to germination, ri is the
per-germinant seed production in the absence of
competition, aii and aij are the competition coefficients
for germinated individuals, gi is the fraction of germi-
nating seeds, and si is seed survival. Because including
the seed bank greatly complicates our analysis yet igno-
ring it would unfairly bias competitive outcomes in the
system, we assume that seeds that ultimately germinate
do so in the year after they are produced. This implies
that higher seed survival rates ultimately increase the
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average annual germination rate, egi (Appendix S1). After
making this adjustment, the model given by Equation (3) is
equivalent to the model given by Equation (1) after setting
s = 0, λi ¼ riegi, and αij ¼ egjaij= λi�1ð Þ. In the absence of a
fluctuating environment (where seeds survival may
buffer populations from extinction), this change is
expected to have no effect on the duration of species’
coexistence.

Metrics of deterministic coexistence

Ultimately, we wish to relate coexistence times to the
metrics of deterministic coexistence commonly used in
contemporary studies of species coexistence. Here we focus
on the invasion growth rate and quantitative definitions
of niche and fitness differences, which are themselves
derivatives of the invasion growth rate. For Equation (1),
the invasion growth rate for species i is given by

I i ¼ λi
1þαij 1=αjj

� �
λi�1ð Þ , ð4Þ

where 1/αjj is the single-species equilibrium density of
species j. In the deterministic model, coexistence occurs

if the invasion growth rates of both species are greater
than one. Equivalently, this occurs when the minimum
of the invasion growth rates, min I 1, I 2f g, is greater than
one. Conversely, if min I 1, I 2f g<1, then one of the spe-
cies’ densities will approach zero over the infinite time
horizon.

Each species’ invasion growth rate is determined by
(1) frequency-dependent processes that provide growth-rate
advantages to both species when they are at low relative
density and (2) frequency-independent processes that
always favor the growth of one species over another,
regardless of relative density. These contributions to
invasion growth rates have been quantitatively formalized
as the niche overlap (ρ) and the average fitness ratio κj/κi
of the two species, respectively (see Chesson [2013] for
mathematical details):

ρ¼
ffiffiffiffiffiffiffiffiffiffiffiαij
αjj

αji
αii

r
and

κj
κi
¼

ffiffiffiffiffiffiffiffiffiffiαiiαij
αjjαji

r
: ð5Þ

Niche overlap, ρ, decreases as the strength of intraspecific
competition increases relative to the strength of interspe-
cific competition. Low niche overlap causes species at
high relative density to limit their own growth through
intraspecific competition more than they limit the growth

0
0.

5
1

1.
5

2
2.

5

0 10 20 30 40 50 60 70 80 90

de
ns

iti
es

time

(a)

S = 10

0
0.

5
1

1.
5

2
2.

5

0 10 20 30 40 50 60 70 80 90

de
ns

iti
es

time

(b)

S = 100
0

0.
5

1
1.

5
2

2.
5

0 10 20 30 40 50 60 70 80 9422

de
ns

iti
es

time

(c)

S = 1000

de
ns

iti
es

time
0 10 20 30 40 50 60 70 80 90

0
0.

5
1

1.
5

2
2.

5

S = 10

(d)

F I GURE 1 (a–c) Deterministic dynamics of species densities ni,t for Equation (1) are shown in light gray and light blue. Sample

trajectories of the stochastic dynamics of the species densities Ni,t/S for Equation (2) are shown in blue and black. As the community size

S increases, there is a closer correspondence between these dynamics, but eventually species go extinct in the stochastic model. (d) Sample

simulation of Aldous et al. (1988) algorithm to estimate quasi-stationary distribution and intrinsic coexistence time. A red circle corresponds

to times at which one or both species are going extinct; states at these times are replaced by states randomly sampled from the past. The

frequency p of these red dots, for sufficiently long runs, determines the intrinsic coexistence time 1/p.
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of species at low relative density through interspecific
competition, leading to higher invasion growth rates.
The fitness ratio κj/κi increases as one species becomes
more sensitive to the total amount of competition in the
system. For example, when κj/κi > 1, species i is more
impacted by competition and will be displaced by spe-
cies j when there is perfect niche overlap. The fitness
ratio is used to quantify fitness differences: The greater
the magnitude of the log fitness ratio, the greater the fit-
ness difference. Ultimately, both species have positive
invasion growth rates when ρ < κj/κi and ρ < κi/κj, dem-
onstrating that deterministic coexistence occurs when
niche overlap is less than 1 and small relative to the fit-
ness difference.

If the species deterministically coexist, they will
approach a globally stable equilibrium, n�

1, n
�
2

� �
. Solving for

the densities at which both species’ fitness equals 1 in the
deterministic model given by Equation (1) gives

n�i ¼
αij�αjj

αijαji�αiiαjj
: ð6Þ

Invasion growth rates (I i) and equilibrium densities
(n�i ) can also be expressed as follows in terms of the niche
overlap and the fitness ratio:

I i ¼ λi
1þρ κj=κi

� �
λi�1ð Þ and n�i ¼

1
αii

1�ρκj=κi
1�ρ2

: ð7Þ

These expressions will become informative for interpreting
the effects of niche overlap and fitness differences on co-
existence times.

Estimating intrinsic coexistence times

Unlike in the deterministic model, in the stochastic
model, both species always go extinct in finite time.
We define the length of time prior to the first species
going extinct as the coexistence time. The distribution
of coexistence times in the stochastic model will depend
on the initial conditions of the system. In studies of
single-species persistence, Grimm and Wissel (2004)
defined a quantity, the intrinsic mean time to extinction,
that provides a common approach for selecting the
initial distribution of the population and, thereby,
allows for cross-parameter and cross-model comparisons.
Here, we extend this work to introduce an analogous
concept, the intrinsic coexistence time. The intrinsic
coexistence time assumes that competing species have
coexisted for a sufficiently long period of time in the past
to exhibit relatively stationary population dynamics, that

is, quasi-stationarity. At quasi-stationarity, the distribu-
tion of community population sizes is given by the
model’s quasi-stationary distribution (QSD) (Méléard &
Villemonais, 2012). While in this quasi-stationary state,
there is a constant probability, call it the persistence prob-
ability p, of losing one or both species each time step. We
call the mean time 1/p to losing at least one of the species
the intrinsic coexistence time.

More precisely, the QSD for our stochastic model
is a probability distribution π(Ni, Nj) on positive population
sizes Ni > 0, Nj > 0 such that, if the species initially follow
this distribution (i.e., Pr[Ni(0) = Ni, Nj(0) = Nj] = π(Ni, Nj)
for all Ni > 0, Nj > 0), then they remain in this distribu-
tion, provided neither goes extinct, i.e.,

Pr Ni 1ð Þ¼Ni,Nj 1ð Þ¼NjjNi 0ð Þ>0,Nj 0ð Þ>0
� �

¼ π Ni,Nj
� �

for all Ni >0,Nj >0:

By the law of total probability, the persistence probability
p when following the QSD satisfies

p¼
X

Ni >0,Nj >0

Pr Ni 1ð Þ>0,Nj 1ð Þ>0jNi 0ð Þ¼Ni,Nj 0ð Þ¼Nj
� �

π Ni,Nj
� �

:

From a matrix point of view, π corresponds to the
dominant left eigenvector of the transition matrix for
the stochastic model, and p is the corresponding
eigenvalue (Méléard & Villemonais, 2012).

Because the state space for the stochastic model is
large even after truncating for rare events, directly
solving for the dominant eigenvector is computation-
ally intractable. Fortunately, there is an efficient simu-
lation algorithm for approximating the QSD due to
Aldous et al. (1988). This algorithm corresponds to
running a modified version of the stochastic model
(Figure 1d). Whenever one of the species goes extinct
in the simulation, the algorithm replaces this state
with a randomly sampled state from the past. More

precisely, if eNi 1ð Þ, eNj 1ð Þ
� �

,…, eNi tð Þ, eNj tð Þ
� �

are the

states of the modified process until year t, then

compute eNi tþ1ð Þ, eNj tþ1ð Þ
� �

according to Equation (2).

If eNi tþ1ð Þ¼ 0 or Nj (t + 1) = 0, then replaceeNi tþ1ð Þ, eNj tþ1ð Þ
� �

by randomly choosing with equal

probability 1/t among the prior states eNi 1ð Þ, eNj 1ð Þ
� �

,

…, eNi tð Þ, eNj tð Þ
� �

. The empirical distribution of

eNi 1ð Þ, eNj 1ð Þ
� �

,…, eNi tð Þ, eNj tð Þ
� �

approaches the QSD as

t ! ∞. This algorithm converges exponentially fast to the
QSD (Benaïm & Cloez, 2015). We use this algorithm to
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estimate coexistence times in our analyses. In
Appendix S8, we also show how this algorithm
also applies to a large class of models simultaneously
accounting for demographic, environmental stochasticity,
and spatial heterogeneity.

Having introduced our model and methods for
determining coexistence times, we now describe how we
apply these methods to address a series of questions
about the relationship between deterministic coexistence
and stochastic coexistence times for our empirically
parameterized models. We emphasize that, although our
models are empirically parameterized and, thus, grounded
in real biology, the focus of our analysis is a comparison
between the predictions of the empirically parameterized
deterministic model and the predictions of the empirically
parameterized stochastic model. Understanding the
relationship between our predicted coexistence times and
observed coexistence times in nature is exceedingly diffi-
cult, likely requiring empirical studies over hundreds to
thousands of generations in most systems. This is beyond
the scope of our current analysis.

How do deterministic coexistence
and competitive exclusion relate
to coexistence times?

We first explore how deterministic coexistence and
deterministic competitive exclusion are related to
coexistence times in the presence of demographic
stochasticity. We do this through a mixture of analytical
and numerical approaches. The analytical approach
uses large deviation theory (Faure & Schreiber, 2014)
to characterize how intrinsic coexistence times scale
with community size S and how this scaling depends
on whether the deterministic model predicts coexis-
tence or exclusion. Based on our empirical parame-
terizations, competition between 82 species pairs is
expected to result in deterministic competitive exclusion
(i.e., parameter values result in min I 1, I2f g<1),
whereas eight species pairs are expected to stably coexist
(i.e., parameter values result in min I 1, I2f g>1). The
remaining species pairs were excluded from our analyses
either because estimates for at least one of the model
parameters were missing or because one of the species
had an intrinsic fitness λi of less than one. For the
two groups of species pairs we focus on (i.e., either
deterministically coexisting or resulting in deterministic
exclusion), we used simulations of 10 million years to
compute intrinsic coexistence times C across a range
of community sizes S. We describe the relationship
between community size and coexistence times for the
models of the species pairs in each group.

Do invasion growth rates predict
coexistence times?

We used linear regression to determine whether deter-
ministic invasion growth rates as given by Equation (4)
influenced intrinsic coexistence times. For this analysis, we
calculated intrinsic coexistence times only for the species
pairs that were expected to deterministically coexist. To esti-
mate intrinsic coexistence times for these species, we set the
community size S = 0.04. This size would be empirically jus-
tified for the smallest serpentine hummocks in our study
landscape (those with a few square meters of suitable
habitat), which might contain as few as 20 individuals of
the subdominant species (based on germinable densities
projected from Gilbert & Levine, 2013). The species that
compose the focal pairs in this analysis tend to be more
common and are often found on larger hummocks, but this
small habitat size allows us to evaluate the dynamics of sys-
tems where the effects of demographic stochasticity might
be substantial. For each species pair we used simulations of
107 years to estimate the coexistence times predicted by the
models. For seven of the species pairs predicted to coexist by
the deterministic models, we were able to generate good esti-
mates of intrinsic coexistence times predicted by the stochas-
tic models because there were multiple extinction events in
simulations of this length. For one species pair predicted to
coexist by the deterministic model, there were no extinction
events in the numerical simulations. Because we only had a
lower bound of >107 years for the mean intrinsic coexistence
time for this pair, it was excluded from our analysis.

Coexistence time was the dependent variable in our
regression, and the log of min I 1, I 2f g was the indepen-
dent variable. We used this independent variable because
the species with the lower invasion growth rate is, all else
being equal, more likely to go extinct first. To examine
the robustness of our conclusions, we repeated our analy-
sis for 1000 randomly drawn parameter values with
community size S = 10. These random draws were
performed on uniform distributions with [1.1, 2] for the λi
values, [0.2, 0.5] for the αii values, and αii � [0, 1] for the
αii values (to ensure deterministic coexistence).

Do equilibrium population sizes predict
coexistence times?

Invasion growth rates were a less than perfect predictor
of coexistence times for the stochastic models (see
Results). Therefore, we also used linear regression to
explore the relationship between the equilibrium
population sizes of the coexisting species and the intrinsic
coexistence time. For this analysis, we used the same
methods as described previously, but with the log of the
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minimum of the two equilibrium population sizes, that
is, min Sn�

1, Sn
�
2

	 

, as the independent variable in the

linear regression. To examine the robustness of our
conclusions, we repeated our analysis for 1000 randomly
drawn parameter values with community size S = 10 as
described earlier in the section Do invasion growth rates
predict coexistence times?

Do greater niche overlap or greater fitness
differences always reduce coexistence
times?

According to deterministic theory, greater niche overlap
and greater fitness differences both have a negative
impact on coexistence (Adler et al., 2007; Chesson, 2000a;
May, 1975). It is important, therefore, to understand
whether these negative effects on deterministic coexis-
tence also have predictably negative effects on the
duration of species’ coexistence. We investigate these
relationships by calculating coexistence times as a
function of niche overlap and fitness differences.

Our goal is to assess the independent effects of
these determinants of coexistence on coexistence times.
However, because niche overlap and fitness differences
are both functions of the same parameters given by
Equation (5), they are not quantitatively (or biologically)
inherently independent (see also Song et al., 2019). This
precludes using the natural variation in niche overlap
and fitness differences observed across our focal species
pairs for our analyses. Therefore, to achieve our goal,
we manipulated niche overlap and fitness differences
separately for each species pair. Specifically, to assess the
effects of niche overlap on model-predicted coexistence
times, we multiplied the interspecific competition coeffi-
cients α12, α21 for each coexisting species pair by a com-
mon, fixed factor. This manipulation allows the niche
overlap to vary while keeping the fitness ratio constant
according to Equation (5). Mechanistically, this may
be interpreted as altering the degree to which the two
species use the same resources. Similarly, to assess
the effects of the fitness difference independent of any
change in niche overlap, we multiplied the competition
coefficients α22, α21 within each coexisting pair by a
fixed factor. This manipulation reduces the sensitivity of
Species 2 to competition, increasing its competitive
ability according to Equation (5), while having no effect
on niche overlap. Mechanistically, this may be interpreted
as increasing the efficiency with which Species 2 uses
shared resources. Based on these manipulations, for each
coexisting species pair we explored the relationship
between niche overlap and coexistence times, and the rela-
tionship between fitness differences and coexistence times.

We interpret these relationships via the effects of niche
overlap and fitness differences on invasion growth rates
and equilibrium population sizes as per Equation (7).

Do stochastic competitive dynamics
influence coexistence times?

Competition may also influence coexistence times because
the stochastic population dynamics of two species are
coupled. For example, a stochastic increase in the popula-
tion size of one species might be expected to result in a
concomitant decrease in the population size of its competi-
tor, increasing its risk of extinction. The effect on the
coexistence times of this dynamic coupling of the two
species is not accounted for by static metrics of coexis-
tence, such as invasion growth rates and equilibrium
population sizes. To identify whether this dynamic
coupling plays an important role in determining coexis-
tence times, we built a simplified model, which we
call the demographically uncoupled model, incorporat-
ing the effects of competition on invasion growth rates
and equilibrium population sizes but excluding the cou-
pling of the stochastic fluctuations in the population
sizes of the competitors. In our demographically
uncoupled model, each species has a low-density growth
rate, λi, and carrying capacity, 1/αii, that matches its
invasion growth rate I i and equilibrium density n�i ,
respectively, from the deterministic two-species model.
The update rule for this simplified model is

Ni,tþ1 ¼ Pois
I iNi,t

1þ Ni,t

Sn�i
I i�1ð Þ

0
@

1
A for i¼ 1, 2: ð8Þ

Importantly, note that the change in the population size of
Ni does not depend on Nj. Therefore, in the demographi-
cally uncoupled model, the effects of interspecific competi-
tion on invasion growth rates and equilibrium population
sizes are retained, but the species are dynamically
uncoupled. By quantifying the relationship between coexis-
tence times calculated for the full (Equation 2) and demo-
graphically uncoupled (Equation 8) models, we can
determine whether the combined effects of competition on
invasion growth rates and equilibrium population sizes are
sufficient to predict coexistence times or whether competi-
tive dynamics arising from the coupled stochastic dynamics
of the species are also important.

In Appendix S7, we show the coexistence times for the
demographically uncoupled model reduce to calculating
the intrinsic persistence times Pi of each species in this
demographically uncoupled model. These persistence times
Pi are calculated independently for each species using the
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Aldous et al. (1988) algorithm. Then the coexistence time
Cuncoupled of the demographically uncoupled model equals

C uncoupled ¼ P1P2

P1þP2�1
: ð9Þ

When the intrinsic persistence times Pi for each species
are sufficiently long (e.g., 10 years or more), the
coexistence time predicted by this demographically
model is approximately one half of the harmonic mean of
the intrinsic persistence times for the two species:
Cuncoupled ≈ 1

2� 1
1
2

1
P1

þ 1
2

1
P2

: Because the harmonic mean is

dominated by the minimum of its arguments, the species
with the shorter persistence time has a greater influence
on the coexistence time.

We calculated intrinsic coexistence times for the full
and demographically uncoupled models for the eight
species pairs expected to deterministically coexist.
We then used linear regression to determine the extent to
which the demographically uncoupled model explains
coexistence times in the full model. To examine the
robustness of our conclusions, we repeated our analysis
for 1000 randomly drawn parameter values with commu-
nity size S = 10, as described in the earlier section Do
invasion growth rates predict coexistence times?

RESULTS

How do deterministic coexistence and
competitive exclusion relate to
coexistence times?

The duration of species’ coexistence tended to be several
orders of magnitude larger for species expected to

deterministically coexist than for those pairs where
deterministic exclusion is expected (Figure 2). Indeed,
our numerical results demonstrate that species expected
to deterministically coexist will tend to do so for decades
to millennia, even when community sizes are small.
By contrast, our numerical simulations suggest that the
vast majority of the 82 species pairs for which deter-
ministic exclusion is expected will tend to coexist for less
than 5 years (Figure 2a).

Our analytical and numerical results reveal a funda-
mental dichotomy between deterministic coexistence
and exclusion in terms of how coexistence times for
the models scale with increasing community size.
In particular, if deterministic exclusion is predicted
(min I1, I 2f g<1), then our mathematical analysis
(Appendix S3) implies that the intrinsic coexistence times
are bounded above by 1= 1�min I1, I 2f gð Þ and do not
increase significantly with community size. This
analytical result is consistent with our numerical results
for the 82 models associated with the species pairs for
which deterministic exclusion was predicted (Figure 2a).
By contrast, if the two species are predicted to determin-
istically coexist (min I1, I 2f g>1), then our analysis
implies that intrinsic coexistence times scale exponen-
tially with the community size S. This means that small
increases in community size lead to very large increases
in the duration of species’ coexistence. This analytical
result is also consistent with our simulations of the
eight species pairs for which deterministic exclusion was
predicted (Figure 2b).

For species pairs predicted to deterministically
coexist, the mathematical analysis only ensures there is a
constant ? >0 such that the intrinsic coexistence time is
proportional to e ? S. There is no simple formula for ?

because it will depend on many details of the
individual-based model (see proofs in Faure and
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F I GURE 2 Coexistence times as a function of community size S for (a) deterministically excluded species pairs and

(b) deterministically coexisting pairs. For each viable species pair, the invasion growth rates I 1, I 2 were computed for the associated

deterministic model. For each species pair, the coexistence time of the associated individual-based model were calculated for a range of

community sizes S. Each of these species pair curves are colored by their min I 1, I 2f g value.
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Schreiber 2014). To understand some of these
dependencies, we explored how coexistence times depended
on key coexistence metrics from the deterministic model
for a fixed community size S = 0.04 (a small hummock;
see methods), the results of which we describe next.

Do invasion growth rates predict
coexistence times?

Across seven pairs of deterministically coexisting
competitors, we found a positive correlation between
the minimum invasion growth rate, min I 1, I 2f g, and
intrinsic coexistence times, as determined from the QSDs
of the empirically parameterized model (adjusted
R2= 0.6038, p = 0.0244; Figure 3a). Intuitively, the spe-
cies with the lower invasion growth rate tends to go
extinct first, so it is the lower of the two invasion growth
rates that predicts coexistence times. However, there
was substantial variation in coexistence times unexpl-
ained by invasion growth rates, such that similar
invasion growth rates resulted in a difference of several
orders of magnitude in coexistence times (Figure 3a).
Random sampling of parameter space produced similar
results (Appendix S4: Figure S1A).

Do equilibrium population sizes predict
coexistence times?

We also found a positive correlation between the minimum
of the equilibrium population sizes, min Sn�1, Sn

�
2

	 

, and

coexistence times (adjusted R2 = 0.3386; p = 0.09964;
Figure 3b). Because equilibrium population sizes did a
worse job of explaining the variation in the coexistence

times than the invasion growth rates, similar equilibrium
population sizes also resulted in several orders of magni-
tude of difference in coexistence times. Random sampling
of parameter space produced similar results (Appendix S4:
Figure S1B).

Does greater niche overlap or greater
fitness differences always reduce
coexistence times?

Greater niche overlap and greater fitness differences did
not always reduce coexistence times, as deterministic
theory would predict (Figures 4 and 5). For five out
of seven species pairs, both greater niche overlap and
greater fitness differences reduced the coexistence times
predicted by the models (Figures 4a,d; Appendix S6).
For these pairs, the relationships were nonlinear but
negatively monotonic. However, for the remaining two
species pairs, the effects of greater niche overlap and
fitness differences on coexistence times were complex
(Figures 5a,d; Appendix S6). For these species pairs,
increasing niche overlap consistently reduced coexistence
times, but in a highly nonlinear fashion (Figure 5a).
By contrast, increasing fitness differences had both
positive and negative effects on coexistence times for the
models associated with these species pairs, depending on
the magnitude of the change in the fitness difference
(Figure 5d). Importantly, for the species pairs where these
complex effects emerged, the competitively inferior species
(as determined by the fitness ratio in Equation 5), had the
higher (i.e., not the minimum) equilibrium population size.

When the inferior competitor has the higher equi-
librium population size, complex effects on coexistence
times emerge via the influence of niche overlap and fitness
differences on the minimum equilibrium population sizes
and the minimum invasion growth rates (Equation 7).
For example, as fitness differences increase, the superior
competitor’s equilibrium population size also increases
(Equation 7, Appendix S6, Figure 5e,f). Consequently,
when the superior competitor has a lower equilibrium
population size, increasing the fitness difference increases
the minimum of the equilibrium population sizes, which
increases coexistence times (Figure 5d). Increasing niche
overlap can also increase the equilibrium population size
of the superior competitor, but it always decreases its inva-
sion growth rate (Equation 7, Appendix S6, Figure 5b,c).
When the superior competitor has a lower equilibrium
abundance, these opposing trends result in coexistence
times that decrease in a highly nonlinear manner with
increasing niche overlap. A general result is that coexis-
tence times decrease when both the minimum invasion
growth rate and the minimum equilibrium population size
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F I GURE 3 Predicting coexistence times using the

(a) minimum, min I 1, I2f g, of invasion growth rates and the

(b) minimum, min Sn�
1, Sn

�
2

	 

, of equilibrium population sizes.

Both panels plotted on a log_log scale. Each of these species pair

curves are colored by their min I 1, I2f g value as in Figure 2.
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decline with increasing niche overlap and increasing fitness
differences (Figures 4 and 5).

Do stochastic competitive dynamics
influence coexistence times?

To isolate the influence of coupled stochastic compe-
titive dynamics on coexistence times, we compared
coexistence times calculated from the full model given by
Equation (2), including these coupled dynamics, with
coexistence times calculated from the demographically
uncoupled model given by Equation (8), excluding these
coupled dynamics. As described in Models and methods, the
demographically uncoupled model is two uncoupled,
individual-based single-species models whose low-density
growth rate and intraspecific competition coefficients equal
I i and 1=n�i , respectively. For the seven species pairs
predicted to coexist in the deterministic model,
the demographically uncoupled model incorporating
competition only through its effects on invasion
growth rates and equilibrium population sizes did an
exceptional job in predicting the actual coexistence

time (logC= 1.031 logCuncoupled with R 2= 0.9977 and
p <10�8, Figure 6). Random sampling of parameter space
produced similar results (Appendix S4: Figure S1C).

DISCUSSION

We introduced a new metric, the intrinsic coexistence
time, that characterizes the risk of species loss due to
demographic stochasticity over any time horizon. This
metric complements more traditional coexistence metrics
based on invasion growth rates and can be computed
for many existing data-based models by following a
two-step procedure. First, extend the deterministic model
to account for demographic stochasticity. Informing
such a stochastic model with demographic data obtained
in a field context is not much more difficult than para-
meterizing deterministic models. Aside from fecundity,
most transition rates (i.e., survival, growth, dispersal
probabilities) of the deterministic model directly transfer
to the stochastic model. The fecundity distribution can be
estimated from the raw data used to calculate mean
fecundity in deterministic models, or one can assume
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F I GURE 4 Effects of niche overlap and fitness ratios on coexistence times for a pair of competing species where the fitness inferior has

the lower equilibrium abundance. In (a) and (d), log10 coexistence times and the demographically uncoupled model approximations (dashed

lines) are plotted. The vertical dotted line corresponds to the base empirical value. In (b) and (e), the deterministic equilibrium population

sizes Sn�
i are plotted, with the gray shading indicating the minimum of the two population sizes. In (c) and (f ), the deterministic invasion

growth rates of the deterministic, mean field model are plotted for the fitness inferior (dashed red) and fitness superior (solid black), with

gray shading indicating minimum of two invasion growth rates.
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that fecundity is Poisson distributed with the calculated
mean. Second, estimate each intrinsic coexistence time
by a single simulation using the algorithm of Aldous
et al. (1988) (see Appendix S8 for extensions to a
broad class of models). Using this two-step approach, we
evaluated how well metrics from deterministic theory
predicted intrinsic coexistence times for 18 species of
California annuals.

Consistent with the deterministic theory, we found
that invasion growth rates were, in general, good
predictors of intrinsic coexistence times in models
explicitly accounting for demographic stochasticity, thereby
reinforcing the general usefulness of these invasion
growth rates in theoretical and empirical studies of species
coexistence. Their usefulness stems from two conclusions
in our study. First, when both species’ invasion growth
rates are positive (i.e., deterministic coexistence
is predicted), intrinsic coexistence times increase exponen-
tially with community size. Thus, for a given minimum
invasion growth rate, doubling community sizes quadru-
ples coexistence times. Strikingly, for the eight species
pairs of serpentine annuals predicted to deterministically
coexist, community sizes corresponding to only 10 indivi-
duals of the less common species were still sufficient

to ensure predicted coexistence times of greater than
1000 years (Figure 2)—a time frame well beyond most
empirically relevant scenarios and much greater than that
considered in most conservation studies (Meine, 1999).
Second, for a given community size, we found that the mini-
mum invasion growth rates (min I 1, I 2f g) explained 60%
of the variation in the coexistence times of the serpentine
annuals predicted to deterministically coexist (Figure 3)
and 82% of the variation of coexistence times for a ran-
dom sampling of parameter space (Appendix S4:
Figure S1A). The two conclusions are consistent
with recent work on coexistence times for the lottery
model, which simultaneously account for environmental
stochasticity and demographic stochasticity (Ellner
et al., 2020; Pande, Fung, Chisholm, & Shnerb, 2020), the
main differences being that invasion growth rates for the
lottery model in the presence of temporal environmental
stochasticity correspond to the geometric mean of fitness
across time, with coexistence times increasing as a power
law, rather than exponentially, with community size
(Ellner et al., 2020).

Despite explaining a significant amount of variation,
invasion growth rates are not perfect predictors of coexis-
tence times in models accounting for demographic
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F I GURE 5 Effects of niche overlap and fitness ratios on coexistence times for a pair of competing species, where the fitness superior

has the lower equilibrium abundance. In (a) and (d), log10 coexistence times and the demographically uncoupled model approximations

(dashed lines) are plotted. The vertical dotted line corresponds to the base empirical value. In (b) and (e), the deterministic equilibrium

population sizes Sn�
i are plotted, with the gray shading indicating the minimum of the two population sizes. In (c) and (f), the deterministic

invasion growth rates of the deterministic, mean field models are plotted for the fitness inferior (dashed red) and fitness superior (solid

black), with gray shading indicating the minimum of two invasion growth rates.
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stochasticity. In particular, predicted coexistence times
varied by an order of magnitude for species pairs of
serpentine annuals with similar values of min I 1, I 2f g
(Figure 3). Thus, although higher invasion growth rates
tend to be associated with longer coexistence times, and
these coexistence times tend to be exceedingly long, the
capacity of invasion growth rates to accurately predict
coexist times should still be viewed with some caution.
Pande, Fung, Chisholm, and Shnerb (2020) raised a
similar concern but for different reasons when studying
Chesson’s lottery model. They demonstrated that incr-
eases in environmental variability could simultaneously
lead to an increase in invasion growth rates and shorter
coexistence times. Our study finds that some disasso-
ciation between invasion growth rates and coexistence
times can occur even without temporal fluctuations in
the fitness of the rare species.

Beyond invasion growth rates, we found that popula-
tion sizes far from the invasion boundary (i.e., equilibrium
population sizes) were also important determinants

of coexistence times. This finding is consistent with
single-species models of extinction risk, where both
low-density growth rate and equilibrium population size
determine risk of extinction (e.g., Lande et al., 2003).
However, in and of themselves, equilibrium population
sizes were poorer predictors of coexistence times than
invasion growth rates. The minimum equilibrium popu-
lation sizes explained 26% less of variation than
min I 1, I 2f g in the empirical species pairs (Figure 3) and
12% less of the variation of the coexistence times in the
random sampling of parameter space (Appendix S4:
Figure S1B).

When combined, the invasion growth rates and the
equilibrium population sizes are such good determinants
of coexistence times that just these two quantities
can explain over 99% of the variation of the predicted
coexistence times (Figure 6, Appendix S4: Figure S1C).
Notably, this predictive capacity emerges from a demo-
graphically uncoupled model parameterized only with
the invasion growth rates and equilibrium population
sizes, while excluding the effects of the coupled stochastic
dynamics of interspecific competition. The success of
the demographically uncoupled model emphasizes that
coexistence times in the presence of demographic
stochasticity can be predicted using minimal information
gleaned directly from an appropriate deterministic model.
Whether this tractable approach applies to stochastic
models with more species or different nonlinearities in the
per-capita growth rates represents an important direction
for future research.

Since the predicted coexistence time for the demogra-
phically uncoupled model is approximately the harmonic
mean of the persistence time for each of the (recalibrated)
single-species models, one can use it to gain additional
insights into coexistence times for competing species.
For example, if both competitors have large invasion growth
rates (i.e., I i � 1), then each competitor’s persistence time
is approximately equal to its exponentiated equilibrium
population abundance, exp n�i S

� �
(Appendix S7), in

which case, for a given community size n�1Sþn�2S¼N ,
the predicted coexistence time is maximized when
both species have equal equilibrium abundances
(Appendix S7). For a more diverse community, this
is equivalent to when Shannon’s diversity index is
maximized. However, if one species has a significantly
lower invasion growth rate than its competitor, then
maximizing the coexistence time requires that this
species be overrepresented in the community (i.e., the
community would have a lower Shannon diversity index)
(Appendix S7).

Because invasion growth rates are imperfect predic-
tors of coexistence times, coexistence metrics derived
solely from invasion growth rates are also imperfect
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F I GURE 6 Predicting coexistence times with

demographically uncoupled model given by Equation (8). Dashed

line is the 1-to-1 line. The main panel shows how the

demographically uncoupled models incorporating only invasion

growth rates and equilibrium population sizes predict coexistence

times for the full, demographically coupled models. Insets: Bar

plots show simulation-based estimates of coupled, competitive

model’s quasi-stationary distributions; black curves are analytical

estimates from demographically uncoupled model. Each of

these species pair curves are colored by their min I 1, I2f g value,

as in Figure 2.
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predictors of coexistence times. These coexistence metrics
include modern quantitative definitions of niche overlap
and fitness differences (Chesson, 2000a, 2013, 2018;
Godoy & Levine, 2014). Because niche overlap and
fitness differences can have opposing effects on the
relative population sizes of competitors, coexistence times
do not necessarily decrease with increasing niche overlap
or increasing fitness differences, as would be expected
based only on deterministic theory (Figure 5a,d).
For models of two of the annual, serpentine species pairs,
this unexpected outcome occurred when the inferior
competitor had the higher equilibrium population size.
Operationally, one can simply check whether this is the
case before interpreting the effects of niche overlap and
fitness differences as they are commonly derived and
applied (Adler et al., 2007, 2010; Gilbert & Levine, 2013;
Chesson, 2000a, 2013). According to Equation (7), the
competitive inferior has the larger equilibrium abun-
dance when it is insensitive to intraspecific competition
(i.e., has a large carrying capacity 1/αjj) but highly
sensitive to interspecific competition relative to the
competitively superior species. This observation
provides an indirect means of evaluating whether
this inverted relationship is likely to occur in a given
empirical system.

Our conclusions are based on an analysis of an
annual plant competition model, which is a specific
case of a large and more general class of models that
can be reexpressed in Lotka–Volterra form. This
class of models has been the focus of much of the the-
oretical and empirical work deriving and applying
quantitative definitions of niche and fitness differences
to studies of species coexistence (Chesson, 1990,
2000a, 2013; Godoy & Levine, 2014; Macarthur &
Levins, 1967). Given that niche and fitness differences
in these models are derived from invasion criteria, we
expect our conclusions about the effects of niche and
fitness differences on coexistence times to apply across
this class of models. More generally, equilibrium den-
sities of competitors are likely to be important quanti-
ties in all models of competition regardless of their
complexity but were not often taken into account in
recent assessments of coexistence (Carroll et al., 2011;
Chesson, 2013; Spaak & De Laender, 2020). For exam-
ple, Spaak & De Laender (2020) provided a general
method for defining niche and fitness differences
using per-capita growth rates evaluated at densities
where at least one species is absent. However, these
metrics do not take into account, and are unlikely to
correlate with, coexistence equilibrium densities.
Therefore, coexistence times are unlikely to map intui-
tively to niche and fitness differences even for these
more general definitions. In sum, our work suggests

that any coexistence metric not explicitly taking
into account densities at which the species coexist
deterministically may not predict coexistence times
correctly.

For models considered here, all conspecific individ-
uals have the same invasion growth rate across time—
there is no variation in the invasion growth rates among
subpopulations of individuals. However, phenotypic,
spatial, and temporal variation in vital rates can impact
competitive outcomes (Chesson, 1994, 2000b; Hart
et al., 2016; Levin, 1974; Schreiber et al., 2011; Stump
et al., 2021; Vasseur et al., 2011; Warner &
Chesson, 1985). Variation in vital rates often results in
variation in invasion growth rates among subpopulations
of individuals within generations (spatial or phenotypic
variation) or between generations (temporal variation).
In these situations, the distribution of these invasion
growth rates, not only the mean, can play a role in
coexistence times. Understanding their role and how
coexistence times depend on the nature of the
variation (phenotypic vs. spatial vs. temporal) is a major
challenge for future work. Because our methodology
for computing intrinsic coexistence is applicable to
models accounting for this variation (see details in
Appendix S8), it may provide a unified approach to
tackling this challenge.

Some progress has been made on understanding
the role of temporal variation on coexistence times
(Ellner et al., 2020; Pande et al., 2020; Pande, Fung,
Chisholm, & Shnerb, 2020). For example, using the
methods presented here, Ellner et al. (2020) found that
the mean invasion growth rates for the lottery model
(Warner & Chesson, 1985) were strongly correlated
with intrinsic coexistence times. However, Pande
et al. (2020a, 2020b) showed that ignoring the temporal
variation in invasion growth rates could result in
incorrect inferences about coexistence times. For
example, greater environmental variation can increase
mean invasion growth rates via the storage effect
(Chesson, 1994), but they can also lead to shorter coexis-
tence times via the storage effect. Similar conclusions
may also apply to within-generation sources of variation.
For example, increasing within-generation variation in
fecundity decreases the persistence times of single species
(Melbourne & Hastings, 2008). We anticipate similar effects
on coexistence times in our models.

The complexities we have identified in our study
highlight the need to understand deterministic coexis-
tence from both equilibrium-based and invasion-based
approaches. Recent relevant equilibrium-based theories
include Saavedra et al.’s (2017) structural stability of
feasible equilibria and Barab�as et al.’s (2014) sensitivity
analysis of stable equilibria. Both of these approaches

14 of 17 SCHREIBER ET AL.

 19399170, 2023, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.3838 by U

niversidad D
e C

adiz, W
iley O

nline L
ibrary on [08/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



provide insights into the range of demographic parameter
values for which the equilibrium abundances remain
positive, that is, feasible. Moreover, Saavedra et al. (2017)
developed feasibility metrics analogous to stabili-
zing niche differences and fitness differences. These
developments raise the promising possibility of deve-
loping more informative, integrative metrics for species
coexistence times.
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