4 research outputs found

    Rapidly evolving ultrafine and fine mode biomass smoke physical properties: Comparing laboratory and field results

    Get PDF
    Combining field and laboratory results, we present biomass smoke physical properties. We report sub-0.56 µm diameter (Dp) particle sizing (fast mobility particle sizer, FMPS) plus light absorption and scattering at 870nm (photoacoustic extinctiometer). For Dp\u3c200 \u3enm, the FMPS characterized sizing within ±20% compared to standards. As compared to the traditional scanning mobility particle sizer, the FMPS responded most accurately to single-mode polydispersions with mean Dp\u3c200 \u3enm, which characterized the smoke sampled here. Smoke was measured from laboratory fresh emissions (seconds to hours old), the High Park Fire (hours to\u3c1 \u3eday), and from regional biomass burning (several days). During a High Park Fire episode, light extinction rapidly reached a maximum of σep = 569 ± 21Mm-1 (10 min) with aerosol single scattering albedo peaking at ω= 0.955 ± 0.004. Concurrently, number concentration and size peaked with maximum Dp = 126nm and a unimodal distribution with σg = 1.5. Long-range transported smoke was substantially diluted (Ntot factor of 7 lower) and shifted larger (maximum Dp = 143) and wider (σg = 2.2). We compared ambient data to laboratory burns with representative western U.S. forest fuels (coniferous species Ponderosa pine and Alaska black spruce). Smoldering pine produced an aerosol dominated by larger, more strongly light scattering particles (Dp\u3e100 nm), while flaming combustion produced very high number concentrations of smaller (Dp ~ 50 nm) absorbing particles. Due to smoldering and particle growth processes, Dp approached 100nm within 3 h after emission. Increased particle cross-sectional area and Mie scattering efficiency shifted the relative importance of light absorption (flaming maximum) and light scattering (smoldering maximum), increasing ω over time. Measurements showed a consistent picture of smoke properties from emission to aging

    Supporting data for the manuscript "Ice nucleating particle emissions from photochemically-aged diesel and biodiesel exhaust"

    No full text
    Immersion-mode ice-nucleating particle concentrations from an off-road diesel engine were measured with a Continuous Flow Diffusion Chamber (CFDC). Both petrodiesel and biodiesel were used, and the exhaust was aged up to 1.5 photochemically equivalent days. Total aerosol and refractory black carbon concentrations were determined in this study with a Scanning Mobility Particle Sizer (SMPS) and Single Particle Soot Photometer, respectively. The CFDC, SMPS, and SP2 data used in this study can be found in this archive

    Characteristics of ice nucleating particles in and around California winter storms

    Get PDF
    A major component of California’s yearly precipitation comes from wintertime atmospheric river (AR) events which bring large amounts of moisture from the tropics up to the midlatitudes. Understanding these systems, specifically the effects of aerosol particles on precipitation associated with these storms, was a major focus of the 2015 Atmospheric Radiation Measurement (ARM) Cloud Aerosol Precipitation Experiment (ACAPEX), which was part of the wintertime CalWater 2015 campaign. The measurement campaign provided sampling platforms on four aircraft, including the ARM Aerial Facility G-1, as well as the NOAA Ronald H.Brown research vessel and at a ground station in Bodega Bay, CA. Measurements of ice nucleating particles (INPs) were made with the Colorado State University (CSU) Continuous Flow Diffusion Chamber (CFDC) aboard the G-1, and Aerosol filters were collected on the G-1, at the Bodega Bay site and on the Ronald H.Brown for post-processing via immersion freezing in the CSU Ice Spectrometer. Aerosol composition was measured aboard the G-1with the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS). Here we present INP concentrati ons and aerosol chemical compositions during the course of the aircraft campaign. During the AR event, we found that marine aerosol was the main aerosol type and that marine INPs were dominant at cloud activation temperatures, which is in stark contrast to the dominance of dust INPs during the AR events in the CalWater 2011 campaign

    A biogenic secondary organic aerosol source of cirrus ice nucleating particles

    Get PDF
    Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at –46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L–1. Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties.ISSN:2041-172
    corecore