12,772 research outputs found
Difference schemes with point symmetries and their numerical tests
Symmetry preserving difference schemes approximating second and third order
ordinary differential equations are presented. They have the same three or
four-dimensional symmetry groups as the original differential equations. The
new difference schemes are tested as numerical methods. The obtained numerical
solutions are shown to be much more accurate than those obtained by standard
methods without an increase in cost. For an example involving a solution with a
singularity in the integration region the symmetry preserving scheme, contrary
to standard ones, provides solutions valid beyond the singular point.Comment: 26 pages 7 figure
The Taming of QCD by Fortran 90
We implement lattice QCD using the Fortran 90 language. We have designed
machine independent modules that define fields (gauge, fermions, scalars,
etc...) and have defined overloaded operators for all possible operations
between fields, matrices and numbers. With these modules it is very simple to
write QCD programs. We have also created a useful compression standard for
storing the lattice configurations, a parallel implementation of the random
generators, an assignment that does not require temporaries, and a machine
independent precision definition. We have tested our program on parallel and
single processor supercomputers obtaining excellent performances.Comment: Talk presented at LATTICE96 (algorithms) 3 pages, no figures, LATEX
file with ESPCRC2 style. More information available at:
http://hep.bu.edu/~leviar/qcdf90.htm
A new two-dimensional lattice model that is "consistent around a cube"
For two-dimensional lattice equations one definition of integrability is that
the model can be naturally and consistently extended to three dimensions, i.e.,
that it is "consistent around a cube" (CAC). As a consequence of CAC one can
construct a Lax pair for the model. Recently Adler, Bobenko and Suris conducted
a search based on this principle and certain additional assumptions. One of
those assumptions was the "tetrahedron property", which is satisfied by most
known equations. We present here one lattice equation that satisfies the
consistency condition but does not have the tetrahedron property. Its Lax pair
is also presented and some basic properties discussed.Comment: 8 pages in LaTe
Multiscale expansion and integrability properties of the lattice potential KdV equation
We apply the discrete multiscale expansion to the Lax pair and to the first
few symmetries of the lattice potential Korteweg-de Vries equation. From these
calculations we show that, like the lowest order secularity conditions give a
nonlinear Schroedinger equation, the Lax pair gives at the same order the
Zakharov and Shabat spectral problem and the symmetries the hierarchy of point
and generalized symmetries of the nonlinear Schroedinger equation.Comment: 10 pages, contribution to the proceedings of the NEEDS 2007
Conferenc
On the Integrability of the Discrete Nonlinear Schroedinger Equation
In this letter we present an analytic evidence of the non-integrability of
the discrete nonlinear Schroedinger equation, a well-known discrete evolution
equation which has been obtained in various contexts of physics and biology. We
use a reductive perturbation technique to show an obstruction to its
integrability.Comment: 4 pages, accepted in EP
Multiscale reduction of discrete nonlinear Schroedinger equations
We use a discrete multiscale analysis to study the asymptotic integrability
of differential-difference equations. In particular, we show that multiscale
perturbation techniques provide an analytic tool to derive necessary
integrability conditions for two well-known discretizations of the nonlinear
Schroedinger equation.Comment: 12 page
Discrete Reductive Perturbation Technique
We expand a partial difference equation (PE) on multiple lattices and
obtain the PE which governs its far field behaviour. The
perturbative--reductive approach is here performed on well known nonlinear
PEs, both integrable and non integrable. We study the cases of the
lattice modified Korteweg--de Vries (mKdV) equation, the Hietarinta equation,
the lattice Volterra--Kac--Van Moerbeke (VKVM) equation and a non integrable
lattice KdV equation. Such reductions allow us to obtain many new PEs
of the nonlinear Schr\"odinger (NLS) type.Comment: 18 pages, 1 figure. submitted to Journal of Mathematical Physic
The lattice Schwarzian KdV equation and its symmetries
In this paper we present a set of results on the symmetries of the lattice
Schwarzian Korteweg-de Vries (lSKdV) equation. We construct the Lie point
symmetries and, using its associated spectral problem, an infinite sequence of
generalized symmetries and master symmetries. We finally show that we can use
master symmetries of the lSKdV equation to construct non-autonomous
non-integrable generalized symmetries.Comment: 11 pages, no figures. Submitted to Jour. Phys. A, Special Issue SIDE
VI
Magnetostrictive Neel ordering of the spin-5/2 ladder compound BaMn2O3: distortion-induced lifting of geometrical frustration
The crystal structure and the magnetism of BaMnO have been studied by
thermodynamic and by diffraction techniques using large single crystals and
powders. BaMnO is a realization of a spin ladder as the
magnetic interaction is dominant along 180 Mn-O-Mn bonds forming the
legs and the rungs of a ladder. The temperature dependence of the magnetic
susceptibility exhibits well-defined maxima for all directions proving the
low-dimensional magnetic character in BaMnO. The susceptibility and
powder neutron diffraction data, however, show that BaMnO exhibits a
transition to antiferromagnetic order at 184 K, in spite of a full frustration
of the nearest-neighbor inter-ladder coupling in the orthorhombic
high-temperature phase. This frustration is lifted by a remarkably strong
monoclinic distortion which accompanies the magnetic transition.Comment: 9 pages, 8 figures, 2 tables; in V1 fig. 2 was included twice and
fig. 4 was missing; this has been corrected in V
Integrability of Differential-Difference Equations with Discrete Kinks
In this article we discuss a series of models introduced by Barashenkov,
Oxtoby and Pelinovsky to describe some discrete approximations to the \phi^4
theory which preserve travelling kink solutions. We show, by applying the
multiple scale test that they have some integrability properties as they pass
the A_1 and A_2 conditions. However they are not integrable as they fail the
A_3 conditions.Comment: submitted to the Proceedings of the workshop "Nonlinear Physics:
Theory and Experiment.VI" in a special issue di Theoretical and Mathematical
Physic
- …