5 research outputs found

    Pectin methyl esterification functions in seed development and germination

    No full text
    Homogalacturonan pectin domains are synthesized in a highly methyl esterified form and can be de-methyl esterified by the cell wall enzyme Pectin Methyl Esterase (PME). The prevalent model for PME mode of action indicates that when PMEs act on a stretch of adjacent galacturonic acid glycosides, they may strengthen the cell wall but when PMEs act on non-adjacent galacturonic acid glycosides they may loosen the cell wall. PME activity can be regulated in planta by the proteinaceous inhibitor, PMEI. I used PME and PMEI to study the importance of methyl esterification in seed development and germination. As a means to identify PMEs involved in seed coat mucilage I identified 7 PMEs expressed in the seed coat. The PME gene HIGHLY METHYL ESTERIFIED SEED (HMS) is highly expressed at 7 Day Post Anthesis (DPA) both in the seed coat and the embryo. Using a hms-1 mutant, I showed that HMS is required for normal levels of PME activity and methyl esterification in the seed, mucilage extrusion and proper embryo cell expansion, rigidity and morphogenesis between 4 and 10 DPA. The mucilage extrusion defect is a secondary effect of the function of HMS in the embryo. I hypothesize that HMS is required for cell wall loosening in the embryo to allow for cell expansion during the accumulation of storage reserves. To evaluate the importance of methyl esterification in germination my collaborators and I first showed that PME activity changed during the different stages of germination: it first increased before testa rupture and decreased during endosperm rupture. Treatment with the hormone abscisic acid (ABA) to increase dormancy prolonged PME activity in the seeds. Inversely when we negatively regulated PME activity in the A. thaliana seed with the overexpression of a PMEI (OE PMEI5), we generated larger seeds with bigger cells. These seeds germinated faster both in presence or absence of ABA. Therefore we hypothesize that the PME(s) inhibited by PMEI5 establishes stronger cell walls that restrict germination. This thesis clearly demonstrates that PME activity is important in the regulation of seed cell wall methyl esterification impacting embryo growth and germination.Science, Faculty ofBotany, Department ofGraduat

    Overexpression of a pectin methylesterase inhibitor in Arabidopsis thaliana leads to altered growth morphology of the stem and defective organ separation

    No full text
    The methylesterification status of cell wall pectins, mediated through the interplay of pectin methylesterases (PMEs) and pectin methylesterase inhibitors (PMEIs), influences the biophysical properties of plant cell walls. We found that the overexpression of a PMEI gene in Arabidopsis thaliana plants caused the stems to develop twists and loops, most strongly around points on the stem where leaves or inflorescences failed to separate from the main stem. Altered elasticity of the stem, underdevelopment of the leaf cuticle, and changes in the sugar composition of the cell walls of stems were evident in the PMEI overexpression lines. We discuss the mechanisms that potentially underlie the aberrant growth phenotypes

    Demethylesterification of Cell Wall Pectins in Arabidopsis Plays a Role in Seed Germination

    No full text
    The methylesterification status of cell wall homogalacturonans, mediated through the action of pectin methylesterases (PMEs), influences the biophysical properties of plant cell walls such as elasticity and porosity, important parameters for cell elongation and water uptake. The completion of seed germination requires cell wall extensibility changes in both the radicle itself and in the micropylar tissues surrounding the radicle. In wild-type seeds of Arabidopsis (Arabidopsis thaliana), PME activities peaked around the time of testa rupture but declined just before the completion of germination (endosperm weakening and rupture). We overexpressed an Arabidopsis PME inhibitor to investigate PME involvement in seed germination. Seeds of the resultant lines showed a denser methylesterification status of their cell wall homogalacturonans, but there were no changes in the neutral sugar and uronic acid composition of the cell walls. As compared with wild-type seeds, the PME activities of the overexpressing lines were greatly reduced throughout germination, and the low steady-state levels neither increased nor decreased. The most striking phenotype was a significantly faster rate of germination, which was not connected to altered testa rupture morphology but to alterations of the micropylar endosperm cells, evident by environmental scanning electron microscopy. The transgenic seeds also exhibited an apparent reduced sensitivity to abscisic acid with respect to its inhibitory effects on germination. We speculate that PME activity contributes to the temporal regulation of radicle emergence in endospermic seeds by altering the mechanical properties of the cell walls and thereby the balance between the two opposing forces of radicle elongation and mechanical resistance of the endosperm

    The Green Edge cruise: Understanding the onset, life and fate of the Arctic phytoplankton spring bloom

    No full text
    Abstract. The Green Edge project was designed to investigate the onset, life and fate of a phytoplankton spring bloom (PSB) in the Arctic Ocean. The lengthening of the ice-free period and the warming of seawater, amongst other factors, have induced major changes in arctic ocean biology over the last decades. Because the PSB is at the base of the Arctic Ocean food chain, it is crucial to understand how changes in the arctic environment will affect it. Green Edge was a large multidisciplinary collaborative project bringing researchers and technicians from 28 different institutions in seven countries, together aiming at understanding these changes and their impacts into the future. The fieldwork for the Green Edge project took place over two years (2015 and 2016) and was carried out from both an ice-camp and a research vessel in the Baffin Bay, canadian arctic. This paper describes the sampling strategy and the data set obtained from the research cruise, which took place aboard the Canadian Coast Guard Ship (CCGS) Amundsen in spring 2016. The dataset is available at https://doi.org/10.17882/59892 (Massicotte et al., 2019a)
    corecore