437 research outputs found
Effect of matrix parameters on mesoporous matrix based quantum computation
We present a solid state implementation of quantum computation, which
improves previously proposed optically driven schemes. Our proposal is based on
vertical arrays of quantum dots embedded in a mesoporous material which can be
fabricated with present technology. We study the feasibility of performing
quantum computation with different mesoporous matrices. We analyse which matrix
materials ensure that each individual stack of quantum dots can be considered
isolated from the rest of the ensemble-a key requirement of our scheme. This
requirement is satisfied for all matrix materials for feasible structure
parameters and GaN/AlN based quantum dots. We also show that one dimensional
ensembles substantially improve performances, even of CdSe/CdS based quantum
dots
Recommended from our members
What does the future hold for utility electricity efficiency programs?
This study develops projections of future spending and savings from electricity efficiency programs funded by electric utility customers in the United States through 2030 based on three scenarios. Our analysis relies on detailed bottom-up modeling of current state energy efficiency policies, demand-side management and integrated resource plans, and regulatory decisions. The three scenarios represent a range of potential outcomes given the policy environment at the time of the study and uncertainties in the broader economic and state policy environment in each state. We project spending to increase to 11.1 billion in 2030 and remains relatively flat in the low case ($6.8 billion in 2030). Our analysis suggests that electricity efficiency programs funded by utility customers will continue to impact load growth significantly at least through 2030, as savings as a percent of retail sales are forecast at 0.7 percent in the medium scenario and 0.98 percent in the high scenario
Mesoporous matrices for quantum computation with improved response through redundance
We present a solid state implementation of quantum computation, which improves previously proposed optically driven schemes. Our proposal is based on vertical arrays of quantum dots embedded in a mesoporous material which can be fabricated with present technology. The redundant encoding typical of the chosen hardware protects the computation against gate errors and the effects of measurement induced noise. The system parameters required for quantum computation applications are calculated for II-VI and III-V materials and found to be within the experimental range. The proposed hardware may help minimize errors due to polydispersity of dot sizes, which is at present one of the main problems in relation to quantum dot-based quantum computation. (c) 2007 American Institute of Physics
Histological Evaluation of the Biocompatibility of Polyurea Crosslinked Silica Aerogel Implants in a Rat Model: A Pilot Study
Background: Aerogels are a versatile group of nanostructured/nanoporous materials with physical and chemical properties that can be adjusted to suit the application of interest. In terms of biomedical applications, aerogels are particularly suitable for implants such as membranes, tissue growth scaffolds, and nerve regeneration and guidance inserts. The mesoporous nature of aerogels can also be used for diffusion based release of drugs that are loaded during the drying stage of the material. From the variety of aerogels polyurea crosslinked silica aerogels have the most potential for future biomedical applications and are explored here. Methodology: This study assessed the short and long term biocompatibility of polyurea crosslinked silica aerogel implants in a Sprague-Dawley rat model. Implants were inserted at two different locations a) subcutaneously (SC), at the dorsum and b) intramuscularly (IM), between the gluteus maximus and biceps femoris of the left hind extremity. Nearby muscle and other internal organs were evaluated histologically for inflammation, tissue damage, fibrosis and movement (travel) of implant. Conclusion/Significance: In general polyurea crosslinked silica aerogel (PCSA) was well tolerated as a subcutaneous and an intramuscular implant in the Sprague-Dawley rat with a maximum incubation time of twenty months. In some cases a thin fibrous capsule surrounded the aerogel implant and was interpreted as a normal response to foreign material. No noticeable toxicity was found in the tissues surrounding the implants nor in distant organs. Comparison was made with control rats without any implants inserted, and animals with suture material present. No obvious or noticeable changes were sustained by the implants at either location. Careful necropsy and tissue histology showed age-related changes only. An effective sterilization technique for PCSA implants as well as staining and sectioning protocol has been established. These studies further support the notion that silica-based aerogels could be useful as biomaterials. © 2012 Sabri et al
Luminescent LaF₃:Ce-doped Organically Modified Nanoporous Silica Xerogels
Organically modified silica compounds (ORMOSILs) were synthesized by a sol-gel method from amine-functionalized 3-aminopropyl triethoxylsilane and tetramethylorthosilicate and were doped in situ with LaF3:Ce nanoparticles, which in turn were prepared either in water or in ethanol. Doped ORMOSILs display strong photoluminescence either by UV or X-ray excitation and maintain good transparency up to a loading level of 15.66% w/w. The TEM observations demonstrate that ORMOSILs remain nanoporous with pore diameters in the 5-10 nm range. LaF3:Ce nanoparticles doped into the ORMOSILs are rod-like, 5 nm in diameter and 10-15 nm in length. Compression testing indicates that the nanocomposites have very good strength, without significant lateral dilatation and buckling under quasi-static compression. LaF3:Ce nanoparticle-doped ORMOSILs have potential for applications in radiation detection and solid state lighting
Investigation of Polyurea-Crosslinked Silica Aerogels as a Neuronal Scaffold: A Pilot Study
BACKGROUND: Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. however, the interaction of neurons with aerogels remains to be investigated. METHODOLOGY: In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA) coated with: poly-L-lysine, basement membrane extract (BME), and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that: 1) untreated PCSA surfaces do not support attachment and growth of nerve cells, 2) a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3) three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4) laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration
Ultra-fast spin-mixing in a diketopyrrolopyrrole monomer / fullerene blend charge transfer state
Diketopyrrolopyrrole (DPP) is one of the most common building blocks for small molecules and conjugated polymers designed for organic electronic applications. By attaining a detailed understanding of the photophysical behaviour for a simple DPP-based molecule in fullerene blends, we establish a foundation for spectroscopic investigations into more complex DPP-based systems. Transient absorption spectroscopy (TAS) and time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy are used to examine bulk heterojunction blend films of a small diketopyrrolopyrrole-based molecule, 2,5-bis(2-hexyldecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) with the common fullerene derivatives [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM). Following pulsed laser excitation, the spectral signatures of a fullerene anion and a TDPP triplet state are observed on the picosecond timescale by TAS. The presence of these species implies the formation of a TDPP:PCBM charge transfer state that subsequently undergoes ultra-fast spin-mixing and geminate recombination to produce a TDPP triplet state. The overall photophysical mechanism is confirmed by TR-EPR spectroscopy, which unambiguously shows that the TDPP triplet is formed via spin-mixing in the TDPP:PCBM charge transfer state, rather than direct intersystem crossing from the excited singlet state
Tyrian purple : an ancient natural dye for cross-conjugated n-type charge transport
Herein, we present two novel organic semiconducting polymers synthesised from an ancient dye. By employing cross-conjugation within the polymer backbone as a synthetic strategy, we are able to engineer optical gaps such that the novel materials absorb over the entire visible spectrum. The cross-conjugated polymers exhibited relatively high n-type charge transport performance in organic field-effect transistors, a rare characteristic for this type of polymer. Quantum chemical calculations provide insight into this behaviour, suggesting that, whilst conjugation along the HOMO is indeed inhibited via molecular design, these materials possess highly delocalized LUMOs, facilitating high n-type charge transport
Impact of Vitamin D Supplementation on Arterial Vasomotion, Stiffness and Endothelial Biomarkers in Chronic Kidney Disease Patients
Background: Cardiovascular events are frequent and vascular endothelial function is abnormal in patients with chronic
kidney disease (CKD). We demonstrated endothelial dysfunction with vitamin D deficiency in CKD patients; however the impact of cholecalciferol supplementation on vascular stiffness and vasomotor function, endothelial and bone biomarkers in CKD patients with low 25-hydroxy vitamin D [25(OH)D] is unknown, which this study investigated.
Methods: We assessed non-diabetic patients with CKD stage 3/4, age 17–80 years and serum 25(OH)D ,75 nmol/L. Brachial
artery Flow Mediated Dilation (FMD), Pulse Wave Velocity (PWV), Augmentation Index (AI) and circulating blood biomarkers were evaluated at baseline and at 16 weeks. Oral 300,000 units cholecalciferol was administered at baseline and 8-weeks.
Results: Clinical characteristics of 26 patients were: age 50614 (mean61SD) years, eGFR 41611 ml/min/1.73 m2, males
73%, dyslipidaemia 36%, smokers 23% and hypertensives 87%. At 16-week serum 25(OH)D and calcium increased (43616
to 84629 nmol/L, p,0.001 and 2.3760.09 to 2.4260.09 mmol/L; p = 0.004, respectively) and parathyroid hormone
decreased (10.868.6 to 7.464.4; p = 0.001). FMD improved from 3.163.3% to 6.163.7%, p = 0.001. Endothelial biomarker
concentrations decreased: E-Selectin from 566662123 to 525662058 pg/mL; p = 0.032, ICAM-1, 3.4560.01 to
3.1061.04 ng/mL; p = 0.038 and VCAM-1, 54633 to 42633 ng/mL; p = 0.006. eGFR, BP, PWV, AI, hsCRP, von Willebrand
factor and Fibroblast Growth Factor-23, remained unchanged.
Conclusion: This study demonstrates for the first time improvement of endothelial vasomotor and secretory functions with vitamin D in CKD patients without significant adverse effects on arterial stiffness, serum calcium or FGF-23.
Trial Registration: ClinicalTrials.gov NCT0200571
Highly Luminescent Encapsulated Narrow Bandgap Polymers Based on Diketopyrrolopyrrole
We present the synthesis and characterisation of a series of encap-sulated diketopyrrolopyrrole red-emitting conjugated polymers. The novel materials display extremely high fluorescence quantum yields in both solution (>70%) and thin film (>20%). Both the absorption and emission spectra show clearer, more defined features compared to their naked counterparts demonstrating the suppression of inter and intra-molecular aggregation. We find that the encapsulation results in decreased energetic disorder and a dramatic increase in backbone co-linearity as evidenced by STM. This study paves the way for DPP to be used in emissive solid state applications and demonstrates a novel method to reduce structural disorder in conju-gated polymers
- …