11 research outputs found

    Temporal controls on silicic acid utilisation along the West Antarctic Peninsula

    Get PDF
    The impact of climatic change along the Antarctica Peninsula has been widely debated in light of atmospheric/oceanic warming and increases in glacial melt over the past half century. Particular concern exists over the impact of these changes on marine ecosystems, not only on primary producers but also on higher trophic levels. Here we present a record detailing the historical controls on the biogeochemical cycling of silicic acid [Si(OH)4] on the west Antarctica Peninsula margin, a region in which the modern phytoplankton environment is constrained by seasonal sea-ice. We demonstrate that Si(OH)4 cycling through the Holocene alternates between being primarily regulated by sea-ice or glacial discharge from the surrounding grounded ice-sheet. With further climate-driven change and melting forecast for the 21st Century, our findings document the potential for biogeochemical cycling and multi-trophic interactions along the peninsula to be increasingly regulated by glacial discharge, altering food-web interactions

    Retreat of the East Antarctic Ice Sheet during the Last Glacial Termination

    No full text
    The retreat of the East Antarctic ice sheet at the end of the last glacial period has been attributed to both sea-level rise and warming of the ocean at the margin of the ice sheet, but it has been challenging to test these hypotheses. Given the lack of constraints on the timing of retreat, it has been difficult to evaluate whether the East Antarctic ice sheet contributed to meltwater pulse 1a, an abrupt sea-level rise of approximately 20 m that occurred about 14,700 years ago. Here we use terrestrial exposure ages and marine sedimentological analyses to show that ice retreat in Mac. Robertson Land, East Antarctica, initiated about 14,000 years ago, became widespread about 12,000 years ago, and was completed by about 7,000 years ago. We use two models of different complexities to assess the forcing of the retreat. Our simulations suggest that, although the initial stage of retreat may have been forced by sea-level rise, the majority of the ice loss resulted from ocean warming at the onset of the Holocene epoch. In light of our age model we conclude that the East Antarctic ice sheet is unlikely to have been the source of meltwater pulse 1a, and, on the basis of our simulations, suggest that Antarctic ice sheets made an insignificant contribution to eustatic sea-level rise at this time

    Hydrocephalus and Colloid Cysts

    No full text

    Antarctic benthos present position and future prospects

    No full text

    The Cholinergic Hypothesis of Memory: A Review of Animal Experiments

    No full text
    corecore