299 research outputs found
Temporal and spatial patterns in the Ross Sea: Phytoplankton biomass, elemental composition, productivity and growth rates
The temporal and spatial patterns of phytoplankton biomass, productivity, and particulate matter composition in the Ross Sea were assessed during cruises in January 1990 and February 1992. Biomass and primary productivity in the southern Ross Sea were greatest during mid-January, with surface chlorophyll concentrations, particulate organic carbon levels, and integrated primary productivity averaging 4.9 Ixg L \u27l, 0.54 mg L-•, and 2.63 g C m • d \u27•, respectively. Comparable mean concentrations and rates for February were 1.1 Ixg L \u27l, 0.29 mg L \u27l, and 0.78 g C m \u27•- d \u27• (decreases of 76, 46, and 70%, respectively), indicative of the scale of temporal changes. A distinct south-north transition also was observed both in productivity and phytoplankton biomass, with the lowest values occurring in the northern Ross Sea. East-west gradients in phytoplankton biomass and composition occurred within the southern Ross Sea. The areal productivity of the Ross Sea ranged from 0.15 to 2.85 g C m • d -• and is among the highest found in the entire Antarctic. Carbon:chlorophyll ratios were uniformly high but were highest (150) in 1990 in the diatom-dominated western Ross Sea. Surface growth rates were modest, averaging less than 0.2 day \u27• during both seasons. We hypothesize that the marked seasonality in the region provides an environment in which net growth rates, although slow, are maximized through low loss rates and which allows biomass to accumulate in the surface layer. Furthermore, the temporal variations are quantitatively similar to the observed spatial variations. Therefore the dominant determinant of phytoplankton biomass and productivity at any one point on the Ross Sea continental shelf is the stage of the seasonal growth cycle
Rituximab monitoring and redosing in pediatric neuromyelitis optica spectrum disorder.
Abstract
OBJECTIVE:
To study rituximab in pediatric neuromyelitis optica (NMO)/NMO spectrum disorders (NMOSD) and the relationship between rituximab, B cell repopulation, and relapses in order to improve rituximab monitoring and redosing.
METHODS:
Multicenter retrospective study of 16 children with NMO/NMOSD receiving 652 rituximab courses. According to CD19 counts, events during rituximab were categorized as "repopulation," "depletion," or "depletion failure" relapses (repopulation threshold CD19 6510
7 10(6) cells/L).
RESULTS:
The 16 patients (14 girls; mean age 9.6 years, range 1.8-15.3) had a mean of 6.1 events (range 1-11) during a mean follow-up of 6.1 years (range 1.6-13.6) and received a total of 76 rituximab courses (mean 4.7, range 2-9) in 42.6-year cohort treatment. Before rituximab, 62.5% had received azathioprine, mycophenolate mofetil, or cyclophosphamide. Mean time from rituximab to last documented B cell depletion and first repopulation was 4.5 and 6.8 months, respectively, with large interpatient variability. Earliest repopulations occurred with the lowest doses. Significant reduction between pre- and post-rituximab annualized relapse rate (ARR) was observed (p = 0.003). During rituximab, 6 patients were relapse-free, although 21 relapses occurred in 10 patients, including 13 "repopulation," 3 "depletion," and 4 "depletion failure" relapses. Of the 13 "repopulation" relapses, 4 had CD19 10-50
7 10(6) cells/L, 10 had inadequate monitoring ( 641 CD19 in the 4 months before relapses), and 5 had delayed redosing after repopulation detection.
CONCLUSION:
Rituximab is effective in relapse prevention, but B cell repopulation creates a risk of relapse. Redosing before B cell repopulation could reduce the relapse risk further.
CLASSIFICATION OF EVIDENCE:
This study provides Class IV evidence that rituximab significantly reduces ARR in pediatric NMO/NMOSD. This study also demonstrates a relationship between B cell repopulation and relapses
Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency
Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families.
Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions.
Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation.
Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency
Integrating Technical Standards into ET Curricula to Meet ABET Standards and Industry Needs
With technical standards affecting nearly every aspect of our daily lives, from computers to the components and materials used in car engines, it is critical that undergraduate students are educated on the importance of standards and provided with opportunities to locate and apply relevant technical standards to real world situations. In addition, with ABET accreditation requiring students to have a “basic understanding and familiarity with,” and experience “using” codes and standards, faculty need to consider how such material can be naturally integrated into the curriculum.
At Purdue University, education about codes and standards has been integrated into the mechanical engineering technology (MET) curriculum for decades with significant success. This paper discusses how standards are incorporated into mechanical design and quality control courses, as well as strategies for integrating standards into more courses in an MET curriculum. In addition, a discussion of standards resources that are freely available is included. Finally, a call to action for industry is presented, explaining the need and potential areas where industry can increase involvement in teaching students about technical standards
Unraveling the pathogenesis of ARX polyalanine tract variants using a clinical and molecular interfacing approach
The Aristaless-related homeobox (ARX) gene is implicated in intellectual disability with the most frequent pathogenic mutations leading to expansions of the first two polyalanine tracts. Here, we describe analysis of the ARX gene outlining the approaches in the Australian and Portuguese setting, using an integrated clinical and molecular strategy. We report variants in the ARX gene detected in 19 patients belonging to 17 families. Seven pathogenic variants, being expansion mutations in both polyalanine tract 1 and tract 2, were identifyed, including a novel mutation in polyalanine tract 1 that expands the first tract to 20 alanines. This precise number of alanines is sufficient to cause pathogenicity when expanded in polyalanine tract 2. Five cases presented a probably non-pathogenic variant, including the novel HGVS: c.441_455del, classified as unlikely disease causing, consistent with reports that suggest that in frame deletions in polyalanine stretches of ARX rarely cause intellectual disability. In addition, we identified five cases with a variant of unclear pathogenic significance. Owing to the inconsistent ARX variants description, publications were reviewed and ARX variant classifications were standardized and detailed unambiguously according to recommendations of the Human Genome Variation Society. In the absence of a pathognomonic clinical feature, we propose that molecular analysis of the ARX gene should be included in routine diagnostic practice in individuals with either nonsyndromic or syndromic intellectual disability. A definitive diagnosis of ARX-related disorders is crucial for an adequate clinical follow-up and accurate genetic counseling of at-risk family members.Unit for Multidisciplinary Research in Biomedicine, UMIB, ICBAS-UP, Porto, Portugal was funded by FEDER funds of the Operational Program for Competitiveness Factors – COMPETE through FCT – Foundation for Science and Technology under the project: Fcomp-01-0124-FEDER-015896. The Neurogenetics research program in the Department of Paediatrics, University of Adelaide, Australia was funded by the Australian National Health and Medical Research Council (Grant No. 1063025). C. S. is supported Australian Research Council (Future Fellowship FT120100086
Complete callosal agenesis, pontocerebellar hypoplasia, and axonal neuropathy due to AMPD2 loss
Objective: To determine the molecular basis of a severe neurologic disorder in a large consanguineous family with complete agenesis of the corpus callosum (ACC), pontocerebellar hypoplasia (PCH), and peripheral axonal neuropathy.
Methods: Assessment included clinical evaluation, neuroimaging, and nerve conduction studies (NCSs). Linkage analysis used genotypes from 7 family members, and the exome of 3 affected siblings was sequenced. Molecular analyses used Sanger sequencing to perform segregation studies and cohort analysis and Western blot of patient-derived cells.
Results: Affected family members presented with postnatal microcephaly and profound developmental delay, with early death in 3. Neuroimaging, including a fetal MRI at 30 weeks, showed complete ACC and PCH. Clinical evaluation showed areflexia, and NCSs revealed a severe axonal neuropathy in the 2 individuals available for electrophysiologic study. A novel homozygous stopgain mutation in adenosine monophosphate deaminase 2 (AMPD2) was identified within the linkage region on chromosome 1. Molecular analyses confirmed that the mutation segregated with disease and resulted in the loss of AMPD2. Subsequent screening of a cohort of 42 unrelated individuals with related imaging phenotypes did not reveal additional AMPD2 mutations.
Conclusions: We describe a family with a novel stopgain mutation in AMPD2. We expand the phenotype recently described as PCH type 9 to include progressive postnatal microcephaly, complete ACC, and peripheral axonal neuropathy. Screening of additional individuals with related imaging phenotypes failed to identify mutations in AMPD2, suggesting that AMPD2 mutations are not a common cause of combined callosal and pontocerebellar defects
Continental slope and rise geomorphology seaward of the Totten Glacier, East Antarctica (112°E-122°E)
The continental slope and rise seaward of the Totten Glacier and the Sabrina Coast, East Antarctica features
continental margin depositional systems with high sediment input and consistent along-slope current activity.
Understanding their genesis is a necessary step in interpreting the paleoenvironmental records they contain.
Geomorphic mapping using a systematic multibeam survey shows variations in the roles of downslope and along
slope sediment transport influenced by broad-scale topography and oceanography. The study area contains two
areas with distinct geomorphology. Canyons in the eastern part of the area have concave thalwegs, are linked to
the shelf edge and upper slope and show signs of erosion and deposition along their beds suggesting cycles of
activity controlled by climate cycles. Ridges between these canyons are asymmetric with crests close to the west
bank of adjacent canyons and are mostly formed by westward advection of fine sediment lofted from turbidity
currents and deposition of hemipelagic sediment. They can be thought of as giant levee deposits. The ridges in
the western part of the area have more gently sloping eastern flanks and rise to shallower depths than those in
the east. The major canyon in the western part of the area is unusual in having a convex thalweg; it is likely fed
predominantly by mass movement from the flanks of the adjacent ridges with less sediment input from the shelf
edge. The western ridges formed by accretion of suspended sediment moving along the margin as a broad plume
in response to local oceanography supplemented with detritus originating from the Totten Glacier. This contrasts
with interpretations of similar ridges described from other parts of Antarctica which emphasise sediment input
from canyons immediately up-current. The overall geomorphology of the Sabrina Coast slope is part of a continuum of mixed contourite-turbidite systems identified on glaciated margins.Australian Government
4333Australian Research Council
DP170100557Italian Programma Nazionale di Richerch in Antartide (PNRA)Spanish Government
CTM2014-60451-C2-1-P
CTM2017-89711-C2-1-
X-Linked lissencephaly with absent corpus callosum and abnormal genitalia: an evolving multisystem syndrome with severe congenital intestinal diarrhea disease
X-linked lissencephaly with abnormal genitalia is a rare and devastating syndrome. The authors present an infant with a multisystem phenotype where the intestinal manifestations were as life limiting as the central nervous system features. Severe chronic diarrhea resulted in failure to thrive, dehydration, electrolyte derangements, long-term hospitalization, and prompted transition to palliative care. Other multisystem manifestations included megacolon, colitis, pancreatic insufficiency hypothalamic dysfunction, hypothyroidism, and hypophosphatasia. A novel aristaless-related homeobox gene mutation, c.1136G>T/p.R379L, was identified. This case contributes to the clinical, histological, and molecular understanding of the multisystem nature of this disorder, especially the role of ARX in the development of the enteroendocrine system.David Coman, Tom Fullston, Cheryl Shoubridge, Richard Leventer, Flora Wong, Simon Nazaretian, Ian Simpson, Josef Gecz, and George McGillivra
Circumpolar Deep Water Impacts Glacial Meltwater Export and Coastal Biogeochemical Cycling Along the West Antarctic Peninsula
Warming along the Antarctic Peninsula has led to an increase in the export of glacial meltwater to the coastal ocean. While observations to date suggest that this freshwater export acts as an important forcing on the marine ecosystem, the processes linking ice–ocean interactions to lower trophic-level growth, particularly in coastal bays and fjords, are poorly understood. Here, we identify salient hydrographic features in Barilari Bay, a west Antarctic Peninsula fjord influenced by warm modified Upper Circumpolar Deep Water. In this fjord, interactions between the glaciers and ocean act as a control on coastal circulation, contributing to the redistribution of water masses in an upwelling plume and a vertical flux of nutrients toward the euphotic zone. This nutrient-rich plume, containing glacial meltwater but primarily composed of ambient ocean waters including modified Upper Circumpolar Deep Water, spreads through the fjord as a 150-m thick layer in the upper water column. The combination of meltwater-driven stratification, long residence time of the surface plume owing to weak circulation, and nutrient enrichment promotes phytoplankton growth within the fjord, as evidenced by shallow phytoplankton blooms and concomitant nutrient drawdown at the fjord mouth in late February. Gradients in meltwater distributions are further paralleled by gradients in phytoplankton and benthic community composition. While glacial meltwater export and upwelling of ambient waters in this way contribute to elevated primary and secondary productivity, subsurface nutrient enhancement of glacially modified ocean waters suggests that a portion of these macronutrients, as well any iron upwelled or input in meltwater, are exported to the continental shelf. Sustained atmospheric warming in the coming decades, contributing to greater runoff, would invigorate the marine circulation with consequences for glacier dynamics and biogeochemical cycling within the fjord. We conclude that ice–ocean interactions along the Antarctic Peninsula margins act as an important control on coastal marine ecosystems, with repercussions for carbon cycling along the west Antarctic Peninsula shelf as a whole
Defining the phenotypical spectrum associated with variants in TUBB2A
Background Variants in genes belonging to the tubulin superfamily account for a heterogeneous spectrum of brain malformations referred to as tubulinopathies. Variants in TUBB2A have been reported in 10 patients with a broad spectrum of brain imaging features, ranging from a normal cortex to polymicrogyria, while one patient has been reported with progressive atrophy of the cerebellar vermis. Methods In order to further refine the phenotypical spectrum associated with TUBB2A, clinical and imaging features of 12 patients with pathogenic TUBB2A variants, recruited via the international network of the authors, were reviewed. Results We report 12 patients with eight novel and one recurrent variants spread throughout the TUBB2A gene but encoding for amino acids clustering at the protein surface. Eleven patients (91.7%) developed seizures in early life. All patients suffered from intellectual disability, and 11 patients had severe motor developmental delay, with 4 patients (36.4 %) being non-ambulatory. The cerebral cortex was normal in five individuals and showed dysgyria of variable severity in seven patients. Associated brain malformations were less frequent in TUBB2A patients compared with other tubulinopathies. None of the patients had progressive cerebellar atrophy. Conclusion The imaging phenotype associated with pathogenic variants in TUBB2A is highly variable, ranging from a normal cortex to extensive dysgyria with associated brain malformations. For recurrent variants, no clear genotype-phenotype correlations could be established, suggesting the role of additional modifiers.</p
- …