3,855 research outputs found

    Affective Science

    Get PDF

    Sensitivity below the standard quantum limit in gravitational wave detectors with Michelson-Fabry-Perot readout

    Full text link
    We calculate the quantum noise limited displacement sensitivity of a Michelson-Fabry-Perot (MFP) with detuned cavities, followed by phase-sensitive homodyne detection. We show that the standard quantum limit can be surpassed even with resonant cavities and without any signal-recycling mirror nor additional cavities. Indeed, thanks to the homodyne detection, the output field quadrature can be chosen in such a way to cancel the effect of input amplitude fluctuations, i.e., eliminating the force noise. With detuned cavities, the modified opto-mechanical susceptivity allows to reach unlimited sensitivity for large enough (yet finite) optical power. Our expressions include mirror losses and cavity delay effect, for a realistic comparison with experiments. Our study is particularly devoted to gravitational wave detectors and we consider both an interferometer with free-falling mirrors, and a MFP as readout for a massive detector. In the latter case, the sensitivity curve of the recently conceived 'DUAL' detector, based on two acoustic modes, is obtained

    A computer graphics display and data compression technique

    Get PDF
    The computer program discussed is intended for the graphical presentation of a general dependent variable X that is a function of two independent variables, U and V. The required input to the program is the variation of the dependent variable with one of the independent variables for various fixed values of the other. The computer program is named CRP, and the output is provided by the SD 4060 plotter. Program CRP is an extremely flexible program that offers the user a wide variety of options. The dependent variable may be presented in either a linear or a logarithmic manner. Automatic centering of the plot is provided in the ordinate direction, and the abscissa is scaled automatically for a logarithmic plot. A description of the carpet plot technique is given along with the coordinates system used in the program. Various aspects of the program logic are discussed and detailed documentation of the data card format is presented

    Mapping the interstellar medium in galaxies with Herschel/SPIRE

    Get PDF
    The standard method of mapping the interstellar medium in a galaxy, by observing the molecular gas in the CO 1-0 line and the atomic gas in the 21-cm line, is largely limited with current telescopes to galaxies in the nearby universe. In this letter, we use SPIRE observations of the galaxies M99 and M100 to explore the alternative approach of mapping the interstellar medium using the continuum emission from the dust. We have compared the methods by measuring the relationship between the star-formation rate and the surface density of gas in the galaxies using both methods. We find the two methods give relationships with a similar dispersion, confirming that observing the continuum emission from the dust is a promising method of mapping the interstellar medium in galaxies

    The Herschel Space Observatory view of dust in M81

    Get PDF
    We use Herschel Space Observatory data to place observational constraints on the peak and Rayleigh-Jeans slope of dust emission observed at 70−500 ÎŒm in the nearby spiral galaxy M81. We find that the ratios of wave bands between 160 and 500 ÎŒm are primarily dependent on radius but that the ratio of 70 to 160 ÎŒm emission shows no clear dependence on surface brightness or radius. These results along with analyses of the spectral energy distributions imply that the 160−500 ÎŒm emission traces 15−30 K dust heated by evolved stars in the bulge and disc whereas the 70 ÎŒm emission includes dust heated by the active galactic nucleus and young stars in star forming regions

    Radial distribution of gas and dust in spiral galaxies: The case of M 99 (NGC 4254) and M 100 (NGC 4321)

    Get PDF
    By combining Herschel-SPIRE data with archival Spitzer, H i , and CO maps, we investigate the spatial distribution of gas and dust in the two famous grand-design spirals M 99 and M 100 in the Virgo cluster. Thanks to the unique resolution and sensitivity of the Herschel-SPIRE photometer, we are for the first time able to measure the distribution and extent of cool, submillimetre (submm)-emitting dust inside and beyond the optical radius. We compare this with the radial variation in both the gas mass and the metallicity. Although we adopt a model-independent, phenomenological approach, our analysis provides important insights. We find the dust extending to at least the optical radius of the galaxy and showing breaks in its radial profiles at similar positions as the stellar distribution. The colour indices f350/f500 and f250/f350 decrease radially consistent with the temperature decreasing with radius. We also find evidence of an increasing gas to dust ratio with radius in the outer regions of both galaxies

    The design of a gamma‐ray burst polarimeter

    Get PDF
    The study of the polarization properties of the gamma‐ray bursts is the one remaining unexplored avenue of research which may help to answer some of the fundamental problems regarding the nature of these mysterious objects. We have designed an instrument to measure linear polarization in cosmic gamma‐ray bursts at energies ≳50 keV. Here we describe the design of this instrument, which we call the Gamma‐ray Burst Polarimeter Experiment (GRAPE)

    SPIRE imaging of M 82: Cool dust in the wind and tidal streams

    Get PDF
    M 82 is a unique representative of a whole class of galaxies, starbursts with superwinds, in the Very Nearby Galaxy Survey with Herschel. In addition, its interaction with the M 81 group has stripped a significant portion of its interstellar medium from its disk. SPIRE maps now afford better characterization of the far-infrared emission from cool dust outside the disk, and sketch a far more complete picture of its mass distribution and energetics than previously possible. They show emission coincident in projection with the starburst wind and in a large halo, much more extended than the PAH band emission seen with Spitzer. Some complex substructures coincide with the brightest PAH filaments, and others with tidal streams seen in atomic hydrogen. We subtract the far-infrared emission of the starburst and underlying disk from the maps, and derive spatially-resolved far-infrared colors for the wind and halo. We interpret the results in terms of dust mass, dust temperature, and global physical conditions. In particular, we examine variations in the dust physical properties as a function of distance from the center and the wind polar axis, and conclude that more than two thirds of the extraplanar dust has been removed by tidal interaction, and not entrained by the starburst wind

    The central region of spiral galaxies as seen by Herschel: M 81, M 99, and M 100

    Get PDF
    With appropriate spatial resolution, images of spiral galaxies in thermal infrared (~10 ÎŒm and beyond) often reveal a bright central component, distinct from the stellar bulge, superimposed on a disk with prominent spiral arms. ISO and Spitzer studies have shown that much of the scatter in the mid-infrared colors of spiral galaxies is related to changes in the relative importance of these two components, rather than to other modifications, such as the morphological type or star formation rate, that affect the properties of the galaxy as a whole. With the Herschel imaging capability from 70 to 500 ÎŒm, we revisit this two-component approach at longer wavelengths, to see if it still provides a working description of the brightness distribution of galaxies, and to determine its implications on the interpretation of global far-infrared properties of galaxies. We quantify the luminosity of the central component by both a decomposition of the radial surface brightness profile and a direct extraction in 2D. We find the central component contribution is variable within the three galaxies in our sample, possibly connected more directly to the presence of a bar than to the morphological type. The central component’s relative contribution is at its maximum in the mid-infrared range and drops around 160 ÎŒm to reach a constant value beyond 200 ÎŒm. The central component contains a greater fraction of hot dust than the disk component, and while the colors of the central components are scattered, colors of the disk components are more homogenous from one galaxy to the next
    • 

    corecore