15 research outputs found

    Reduced CETP glycosylation and activity in patients with homozygous B4GALT1 mutations

    No full text
    Contains fulltext : 220538.pdf (Publisher’s version ) (Open Access)The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying the effects of defective glycosylation on plasma lipids in patients with B4GALT1-CDG, caused by a mutation in B4GALT1 with defective N-linked glycosylation. We studied plasma lipids, cholesteryl ester transfer protein (CETP) glyco-isoforms with isoelectric focusing followed by a western blot and CETP activity in three known B4GALT1-CDG patients and compared them with 11 age- and gender-matched, healthy controls. B4GALT1-CDG patients have significantly lowered non-high density lipoprotein cholesterol (HDL-c) and total cholesterol to HDL-c ratio compared with controls and larger HDL particles. Plasma CETP was hypoglycosylated and less active in B4GALT1-CDG patients compared to matched controls. Our study provides insight into the role of protein glycosylation in human lipoprotein homeostasis. The hypogalactosylated, hypo-active CETP found in patients with B4GALT1-CDG indicates a role of protein galactosylation in regulating plasma HDL and LDL. Patients with B4GALT1-CDG have large HDL particles probably due to hypogalactosylated, hypo-active CETP

    Diabetic Nephropathy Alters the Distribution of Circulating Angiogenic MicroRNAs Among Extracellular Vesicles, HDL, and Ago-2

    Get PDF
    Previously, we identified plasma microRNA (miR) profiles that associate with markers of microvascular injury in patients with diabetic nephropathy (DN). However, miRs circulate in extracellular vesicles (EVs) or in association with HDL or the RNA-binding protein argonaute-2 (Ago-2). Given that the EV- and HDL-mediated miR transfer toward endothelial cells (ECs) regulates cellular quiescence and inflammation, we hypothesized that the distribution of miRs among carriers affects microvascular homeostasis in DN. Therefore, we determined the miR expression in EV, HDL, and Ago-2 fractions isolated from EDTA plasma of healthy control subjects, patients with diabetes mellitus (DM) with or without early DN (estimated glomerular filtration rate [eGFR] >30 mL/min/1.73 m(2)), and patients with DN (eGFR <30 mL/min/1.73 m(2)). Consistent with our hypothesis, we observed alterations in miR carrier distribution in plasma of patients with DM and DN compared with healthy control subjects. Both miR-21 and miR-126 increased in EVs of patients with DN, whereas miR-660 increased in the Ago-2 fraction and miR-132 decreased in the HDL fraction. Moreover, in vitro, differentially expressed miRs improved EC barrier formation (EV-miR-21) and rescued the angiogenic potential (HDL-miR-132) of ECs cultured in serum from patients with DM and DN. In conclusion, miR measurement in EVs, HDL, and Ago-2 may improve the biomarker sensitivity of these miRs for microvascular injury in DN, while carrier-specific miRs can improve endothelial barrier formation (EV-miR-21/126) or exert a proangiogenic response (HDL-miR-132).Diabetes mellitus: pathophysiological changes and therap

    Defective Lipid Droplet-Lysosome Interaction Causes Fatty Liver Disease as Evidenced by Human Mutations in TMEM199 and CCDC115

    Get PDF
    BACKGROUND & AIMS: Recently, novel inborn errors of metabolism were identified because of mutations in V-ATPase assembly factors TMEM199 and CCDC115. Patients are characterized by generalized protein glycosylation defects, hypercholesterolemia, and fatty liver disease. Here, we set out to characterize the lipid and fatty liver phenotype in human plasma, cell models, and a mouse model. METHODS AND RESULTS: Patients with TMEM199 and CCDC115 mutations displayed hyperlipidemia, characterized by increased levels of lipoproteins in the very low density lipoprotein range. HepG2 hepatoma cells, in which the expression of TMEM199 and CCDC115 was silenced, and induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells from patients with TMEM199 mutations showed markedly increased secretion of apolipoprotein B (apoB) compared with controls. A mouse model for TMEM199 deficiency with a CRISPR/Cas9-mediated knock-in of the human A7E mutation had marked hepatic steatosis on chow diet. Plasma N-glycans were hypogalactosylated, consistent with the patient phenotype, but no clear plasma lipid abnormalities were observed in the mouse model. In the siTMEM199 and siCCDC115 HepG2 hepatocyte models, increased numbers and size of lipid droplets were observed, including abnormally large lipid droplets, which colocalized with lysosomes. Excessive de novo lipogenesis, failing oxidative capacity, and elevated lipid uptake were not observed. Further investigation of lysosomal function revealed impaired acidification combined with impaired autophagic capacity. CONCLUSIONS: Our data suggest that the hypercholesterolemia in TMEM199 and CCDC115 deficiency is due to increased secretion of apoB-containing particles. This may in turn be secondary to the hepatic steatosis observed in these patients as well as in the mouse model. Mechanistically, we observed impaired lysosomal function characterized by reduced acidification, autophagy, and increased lysosomal lipid accumulation. These findings could explain the hepatic steatosis seen in patients and highlight the importance of lipophagy in fatty liver disease. Because this pathway remains understudied and its regulation is largely untargeted, further exploration of this pathway may offer novel strategies for therapeutic interventions to reduce lipotoxicity in fatty liver disease
    corecore