42 research outputs found

    Defective Lipid Droplet-Lysosome Interaction Causes Fatty Liver Disease as Evidenced by Human Mutations in TMEM199 and CCDC115

    Get PDF
    BACKGROUND &amp; AIMS: Recently, novel inborn errors of metabolism were identified because of mutations in V-ATPase assembly factors TMEM199 and CCDC115. Patients are characterized by generalized protein glycosylation defects, hypercholesterolemia, and fatty liver disease. Here, we set out to characterize the lipid and fatty liver phenotype in human plasma, cell models, and a mouse model.METHODS AND RESULTS: Patients with TMEM199 and CCDC115 mutations displayed hyperlipidemia, characterized by increased levels of lipoproteins in the very low density lipoprotein range. HepG2 hepatoma cells, in which the expression of TMEM199 and CCDC115 was silenced, and induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells from patients with TMEM199 mutations showed markedly increased secretion of apolipoprotein B (apoB) compared with controls. A mouse model for TMEM199 deficiency with a CRISPR/Cas9-mediated knock-in of the human A7E mutation had marked hepatic steatosis on chow diet. Plasma N-glycans were hypogalactosylated, consistent with the patient phenotype, but no clear plasma lipid abnormalities were observed in the mouse model. In the siTMEM199 and siCCDC115 HepG2 hepatocyte models, increased numbers and size of lipid droplets were observed, including abnormally large lipid droplets, which colocalized with lysosomes. Excessive de novo lipogenesis, failing oxidative capacity, and elevated lipid uptake were not observed. Further investigation of lysosomal function revealed impaired acidification combined with impaired autophagic capacity.CONCLUSIONS: Our data suggest that the hyperchole-sterolemia in TMEM199 and CCDC115 deficiency is due to increased secretion of apoB-containing particles. This may in turn be secondary to the hepatic steatosis observed in these patients as well as in the mouse model. Mechanistically, we observed impaired lysosomal function characterized by reduced acidification, autophagy, and increased lysosomal lipid accumulation. These findings could explain the hepatic steatosis seen in patients and highlight the importance of lipophagy in fatty liver disease. Because this pathway remains understudied and its regulation is largely untargeted, further exploration of this pathway may offer novel strategies for therapeutic interventions to reduce lipotoxicity in fatty liver disease.</p

    Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects : a randomised double-blind placebo-controlled cross-over study

    Get PDF
    Objective Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. Design In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. Results A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. Conclusions A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity.Peer reviewe

    A Phospholipidomic Analysis of All Defined Human Plasma Lipoproteins

    Get PDF
    Since plasma lipoproteins contain both protein and phospholipid components, either may be involved in processes such as atherosclerosis. In this study the identification of plasma lipoprotein-associated phospholipids, which is essential for understanding these processes at the molecular level, are performed. LC-ESI/MS, LC-ESI-MS/MS and High Performance Thin Layer Chromatography (HPTLC) analysis of different lipoprotein fractions collected from pooled plasma revealed the presence of phosphatidylethanolamine (PE), phosphatidylinositol (PI), and sphingomyeline (SM) only on lipoproteins and phosphatidylcholine (PC), Lyso-PC on both lipoproteins and plasma lipoprotein free fraction (PLFF). Cardiolipin, phosphatidylglycerol (PG) and Phosphatidylserine (PS) were observed neither in the lipoprotein fractions nor in PLFF. All three approaches led to the same results regarding phospholipids occurrence in plasma lipoproteins and PLFF. A high abundancy of PE and SM was observed in VLDL and LDL fractions respectively. This study provides for the first time the knowledge about the phospholipid composition of all defined plasma lipoproteins

    Practical Image Restoration of Thick Biological Specimens Using Multiple

    No full text
    this paper we present a quantitative analysis of the application of the Schiske formalism to the imaging of thick biological specimens. We use a complete exit wave reconstruction based on 40 images as a standard for comparison. In addition, based on our experiments on the mechanism of image formation for thick sections, we propose a new way to combine the amplitude and phase contrast components to generate the restored image. This approach better accounts for the contribution of multiple scattering at low resolutio

    Proteomic analysis of high-density lipoprotein

    No full text
    Plasma lipoproteins, such as high-density lipoprotein (HDL), can serve as carriers for a wide range of proteins that are involved in processes such as lipid metabolism, thrombosis, inflammation and atherosclerosis. The identification of HDL-associated proteins is essential with regards to understanding these processes at the molecular level. In this study, a combination of proteomic approaches including 1-DE and 2-DE MALDI-TOF, isotope-coded affinity tag and Western blot analysis were employed to identify proteins associated with human HDL. To minimize potential losses of HDL-associated proteins during isolation, a one-step ultracentrifugation technique was applied and the quality of purified HDL was confirmed by nephelometry, high-performance gel chromatography, and Western blot analysis. MS analysis revealed the presence of 56 HDL-associated proteins including all known apolipoproteins and lipid transport proteins. Furthermore, proteins involved in hemostasis and thrombosis, the immune and complement system were found. In addition, growth factors, receptors, hormone-associated proteins and many other proteins were found to be associated with HDL. Our approach thus resulted in the identification of a large number of proteins associated with HDL. The combination of proteomic technologies proved to be a powerful and comprehensive tool for the identification of proteins on HD

    HDL protein composition alters from proatherogenic into less atherogenic and proinflammatory in rheumatoid arthritis patients responding to rituximab

    No full text
    An atherogenic lipid profile is an established risk factor for cardiovascular (CV) diseases. Interestingly, high inflammatory states as present in rheumatoid arthritis (RA) are associated with unfavourable lipid profile. Data about effects of novel immunomodulating agents as rituximab (RTX) on lipid profile are limited. Therefore, changes in lipids in RTX treated RA patients were evaluated. In 49 consecutive RTX treated RA patients, serum and EDTA plasma samples were collected at baseline, 1, 3 and 6 months. In these samples, lipid and levels were assessed to determine changes in time. Surface-enhanced laser desorption/ionisation time-of-flight (SELDI-TOF) MS analysis was performed in six good and six non-responding RA patients to study functional high density lipoprotein (HDL) protein composition changes in time. In the total group (n=49), the atherogenic index decreased from 4.3 to 3.9 (∼9%) after 6 months. Testing for effect modification revealed a difference in the effect on lipid levels between responders and non-responders upon RTX (p <0.001). ApoB to ApoA-I ratios decreased significantly (∼9%) in good responding (n=32) patients. SELDI-TOF MS analysis revealed a significant decrease in density of mass charge (m/z) marker 11743, representing a decrease in serum amyloid A, in good responding patients. This study indicates beneficial effects on cholesterol profile upon RTX treatment along with improvement of disease activity. Proteomic analysis of the HDL particle reveals composition changes from proatherogenic to a less proatherogenic composition during 6 months RTX treatment. Whether these HDL particle alterations during immunotherapies result in a lower CV event rate remains to be establishe

    Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome

    Get PDF
    Dysbiosis of the intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We performed a phase I/II dose-finding and safety study on the effect of oral intake of the anaerobic butyrogenic strain Anaerobutyricum soehngenii on glucose metabolism in 24 subjects with metabolic syndrome. We found that treatment with A. soehngenii was safe and observed a significant correlation between the measured fecal abundance of administered A. soehngenii and improvement in peripheral insulin sensitivity after 4 weeks of treatment. This was accompanied by an altered microbiota composition and a change in bile acid metabolism. Finally, we show that metabolic response upon administration of A. soehngenii (defined as improved insulin sensitivity 4 weeks after A. soehngenii intake) is dependent on microbiota composition at baseline. These data in humans are promising, but additional studies are needed to reproduce our findings and to investigate long-term effects, as well as other modes of delivery.Peer reviewe
    corecore