174 research outputs found
Crystallization of YIoQ, a GTPase of unknown function essential for Bacillus subtilis viability
YLoQ is a putative ATP/GTP-binding protein of unknown function identified from the complete sequence of the Bacillus subtilis genome. A gene-knockout programme established that yloQ is one of a set of some 270 indispensable genes for the viability of this organism. Crystals of YloQ have been grown from HEPES-buffered solutions at pH 7.5 containing polyethylene glycol and diffraction data have been collected extending to 2.5 Angstrom spacing
The structure of Rph, an exoribonuclease from Bacillus anthracis, at 1.7 angstrom resolution
Maturation of tRNA precursors into functional tRNA molecules requires trimming of the primary transcript at both the 5' and 3' ends. Cleavage of nucleotides from the 3' stem of tRNA precursors, releasing nucleotide diphosphates, is accomplished in Bacillus by a phosphate-dependent exoribonuclease, Rph. The crystal structure of this enzyme from B. anthracis has been solved by molecular replacement to a resolution of 1.7 angstrom and refined to an R factor of 19.3%. There is one molecule in the asymmetric unit; the crystal packing reveals the assembly of the protein into a hexamer arranged as a trimer of dimers. The structure shows two sulfate ions bound in the active-site pocket, probably mimicking the phosphate substrate and the phosphate of the 3'-terminal nucleotide of the tRNA precursor. Three other bound sulfate ions point to likely RNA-binding sites
Crystallization of the oligopeptide-binding protein AppA from Bacillus subtilis
AppA is the membrane-anchored extracellular receptor component of an ABC transporter responsible for the uptake of oligopeptides into Bacillus subtilis. AppA has been overexpressed as a cleavable maltose-binding protein fusion in Escherichia coli. Following removal of the fusion portion, AppA has been crystallized from morpholino-ethanesulfonic acid-buffered solutions at pH 6.5 containing polyethylene glycol and zinc acetate. A complete X-ray diffraction data set extending to 2.3 Angstrom spacing has been collected
Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis
Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium
Three-dimensional structure of Serratia marcescens nuclease at 1.7 Å resolution and mechanism of its action
AbstractThe three-dimensional crystal structure of Serratia marcescens (Sm) nuclease has been refined at 1.7 Å resolution to the R-factor of 17.3% and R-free of 22.2%. The final model consists of 3678 non-hydrogen atoms and 443 water molecules. The analysis of the secondary and the tertiary structures of the Sm nuclease suggests a topology which reveals essential inner symmetry in all the three layers forming the monomer. We propose the plausible mechanism of its action based on a concerted participation of the catalytically important amino acid residues of the enzyme active site
Recommended from our members
A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasomal proteases
PP2C phosphatases control biological processes including stress responses, development, and cell division in all kingdoms of life. Diverse regulatory domains adapt PP2C phosphatases to specific functions, but how these domains control phosphatase activity was unknown. We present structures representing active and inactive states of the PP2C phosphatase SpoIIE from Bacillus subtilis. Based on structural analyses and genetic and biochemical experiments, we identify an a-helical switch that shifts a carbonyl oxygen into the active site to coordinate a metal cofactor. Our analysis indicates that this switch is widely conserved among PP2C family members, serving as a platform to control phosphatase activity in response to diverse inputs. Remarkably, the switch is shared with proteasomal proteases, which we identify as evolutionary and structural relatives of PP2C phosphatases. Although these proteases use an unrelated catalytic mechanism, rotation of equivalent helices controls protease activity by movement of the equivalent carbonyl oxygen into the active site
An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein
Campylobacter jejuni is a Gram-negative food-borne pathogen associated with gastroenteritis in humans as well as cases of the autoimmune disease Guillain Barre syndrome. C. jejuni is asaccharolytic because it lacks an active glycolytic pathway for the use of sugars as a carbon source. This suggests an increased reliance on amino acids as nutrients and indeed the genome sequence of this organism indicates the presence of a number of amino acid uptake systems. Cj0982, also known as CjaA, is a putative extracytoplasmic solute receptor for one such uptake system as well as a major surface antigen and vaccine candidate. The crystal structure of Cj0982 reveals a two-domain protein with density in the enclosed cavity between the domains that clearly defines the presence of a bound cysteine ligand. Fluorescence titration experiments were used to demonstrate that Cj0982 binds cysteine tightly and specifically with a K-d of similar to 10(-7) M consistent with a role as a receptor for a high- affinity transporter. These data imply that Cj0982 is the binding protein component of an ABC-type cysteine transporter system and that cysteine uptake is important in the physiology of C. jejuni
Structure of the Branched Chain Amino Acid and GTP Sensing Global Regulator, CodY, from Bacillus subtilis
CodY is a branched-chain amino acid (BCAA) and GTP sensor, and a global regulator of transcription in low G + C Gram-positive bacteria. It controls the expression of over 100 genes and operons, principally by repressing during growth genes whose products are required for adaptations to nutrient limitation. CodY consists of a GAF domain that binds BCAAs and a winged helix-turn-helix (wHTH) domain that binds to DNA, but the way in which these domains interact and the structural basis of the BCAA-dependence of this interaction are unknown. To gain new insights, we determined the crystal structure of unliganded CodY from Bacillus subtilis revealing a 10-turn alpha-helix linking otherwise discrete GAF and wHTH domains. The structure of CodY in complex with isoleucine revealed a reorganised GAF domain. In both complexes CodY was tetrameric. Size exclusion chromatography with multiangle laser light scattering (SEC-MALLS) experiments showed that CodY is a dimer at concentrations found in bacterial cells. Comparison of structures of dimers of unliganded CodY and CodY-Ile derived from the tetramers showed a splaying of the wHTH domains when Ile was bound; splaying is likely to account for the increased affinity of Ile-bound CodY for DNA. Electrophoretic mobility shift and SEC-MALLS analyses of CodY binding to 19-36 base-pair operator fragment are consistent with isoleucine-dependent binding of two CodY dimers per duplex. The implications of these observations for effector control of CodY activity are discussed
Expression of soluble, active fragments of the morphogenetic protein SpoIIE from Bacillus subtilis using a library-based construct screen
SpoIIE is a dual function protein that plays important roles during sporulation in Bacillus subtilis. It binds to the tubulin-like protein FtsZ causing the cell division septum to relocate from mid-cell to the cell pole, and it dephosphorylates SpoIIAA phosphate leading to establishment of differential gene expression in the two compartments following the asymmetric septation. Its 872 residue polypeptide contains a multiple-membrane spanning sequence at the N-terminus and a PP2C phosphatase domain at the C-terminus. The central segment that binds to FtsZ is unlike domains of known structure or function, moreover the domain boundaries are poorly defined and this has hampered the expression of soluble fragments of SpoIIE at the levels required for structural studies. Here we have screened over 9000 genetic constructs of spoIIE using a random incremental truncation library approach, ESPRIT, to identify a number of soluble C-terminal fragments of SpoIIE that were aligned with the protein sequence to map putative domains and domain boundaries. The expression and purification of three fragments were optimised, yielding multimilligram quantities of the PP2C phosphatase domain, the putative FtsZ-binding domain and a larger fragment encompassing both these domains. All three fragments are monomeric and the PP2C domain-containing fragments have phosphatase activity
Human Lin28 forms a high-affinity 1:1 complex with the 106~363 cluster miRNA miR-363
Lin28A is a post-transcriptional regulator of gene expression that interacts with and negatively regulates the biogenesis of let-7 family miRNAs. Recent data suggested that Lin28A also binds the putative tumour suppressor miR-363, a member of the 106~363 cluster of miRNAs. Affinity toward this miRNA and the stoichiometry of the protein-RNA complex are unknown. Characterisation of human Lin28's interaction with RNA has been complicated by difficulties in producing stable RNA-free protein. We have engineered a maltose binding protein fusion with Lin28, which binds let-7 miRNA with a Kd of 54.1 ± 4.2 nM, in agreement with previous data on a murine homologue. We show that human Lin28A binds miR-363 with 1:1 stoichiometry and with similar, if not higher, affinity (Kd = 16.6 ± 1.9 nM). Further analysis suggests that the interaction of the N-terminal cold shock domain of Lin28A with RNA is salt-dependent, supporting a model where the cold shock domain allows the protein to sample RNA substrates through transient electrostatic interactions
- …
