123 research outputs found

    Parallel triangularization of substructured finite element problems

    Get PDF
    Much of the computational effort of the finite element process involves the solution of a system of linear equations. The coefficient matrix of this system, known as the global stiffness matrix, is symmetric, positive definite, and generally sparse. An important technique for reducing the time required to solve this system is substructuring or matrix partitioning. Substructuring is based on the idea of dividing a structure into pieces, each of which can then be analyzed relatively indepenently. As a result of this division, each point in the finite element discretization is either interior to a substructure or on a boundary between substructures. Contributions to the global stiffness matrix from connections between boundary points from the K(bb) matrix are reported. The triangularization of a general K(bb) matrix on a parallel machine is specifically discussed

    ANION EXCHANGE SEPARATION OF TRIVALENT ACTINIDES AND LANTHANIDES

    Get PDF
    A process for separating americium and curium from rare earths by anion exchange based on selective chloride complexing was developed and tested on a laboratory scale. The separation is accomplished by sorption of americium, curium, and rare earths on Dowex 1-10X resin from a solution of 8 M LiNO/dub 3/ followed by selective elution of rare earths with 10 M LiCl and americium-curium elution with 1 M LiCl. In a laboratory demonstration of this process, greater than 99.5% of americium tracer containing no detectable amounts of rare earths was recovered. (auth

    TRANSURANIC STUDIES STATUS AND PROBLEM STATEMENT

    Get PDF
    The purpose of the Transuranics Program is to develop separation processes for the transuranic elements, primarily those produced by long-term neutron irradiation of Pu/sup 239/. The program includes laboratory process development, pilot-plant process testing, processing of 10 kg of Pu/sup 239/ irradiated to greater than 99% burn-up for plutonium and americium-curium recovery, and processing the reirradiated plutonium and americium-curium fractions. The proposed method for processing highly irradiated plutonium is: (1) plutonium-aluminum alloy dissolution in HNO/sub 3/; (2) plutonium recovery by TBP extraction; (3) americium, curium, and rare-earth extraction by TBP from neutral nitrate solution; (4) partial rare-earth removal (primarily lanthanum) by americium-curium extraction into 100% TBP from 15M HNO/sub 3/; (5) additional rare-earth removal by extraction in 0.48M mono-2-ethylhexylphosphoric acid from 12M HCl; and (6) americium-curium purification by chloride anion exchange. Processing through the 100% TBP, 15M HNO/sub 3/ cycle can be carried out in the Power Reactor Fuel Reprocessing Pilot Plant. New facilities are proposed 15M HNO/ sub 3/ cycle can be carried out in the Power Reactor Fuel Reprocessing Pilot Plant. New facilities are proposed for laboratory process development studies and the final processing of the transplutonic elements. (auth

    Insights from Comparative Genomics of the Genus Salmonella

    Get PDF
    Comparative genomics have become a standard approach to gain insights into the interrelationships of microorganisms. Here, we have applied variable bioinformatic techniques to compare over 200 Salmonella genomes. First, we present a tree of all sequenced different members of the Enterobacteriaceae family, based on comparison of average amino acid identities. This technique was also applied to zoom in on the genomes of the genus Salmonella. The pan and core genomes of this genus were established and compared to experimental data available on the literature that identified essential genes. Difficulties and shortcomings of both approaches are discussed. Metabolic pathways unique for Salmonella were identified. Finally, we present an analysis of genes coding for small RNAs, an important part of the genetic repertoire of bacteria that is often ignored. The findings reported here are discussed and compared with available literature

    BESC knowledgebase public portal†

    Get PDF
    The BioEnergy Science Center (BESC) is undertaking large experimental campaigns to understand the biosynthesis and biodegradation of biomass and to develop biofuel solutions. BESC is generating large volumes of diverse data, including genome sequences, omics data and assay results. The purpose of the BESC Knowledgebase is to serve as a centralized repository for experimentally generated data and to provide an integrated, interactive and user-friendly analysis framework. The Portal makes available tools for visualization, integration and analysis of data either produced by BESC or obtained from external resources

    Insights from 20 years of bacterial genome sequencing

    Get PDF
    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them
    • …
    corecore