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, PARALLEL TRIANGULARIZATION

OF SUBSTRUCTURED FINITE ELEMENT PROBLEMS

Michael R. Leuze

Vanderbilt University

Abstract

Much of the computational effort of the finite element process in-
volves the solution of a system of linear equations. The coefficient

matrix of this system, known as the global stiffness matrix, is
symmetric, positive definite, and generally sparse. An important
technique for reducing the time required to solve this system is
substructuring or matrix partitioning. Substructuring is based on
the idea of dividing a structure into.pieces, each of which can then
be analyzed relatively independently. As a result of this division,
each point in the finite element discretization is either interior to

a substructure or on a boundary between substructures. Contri-
butions to the global stiffness matrix from connections between

boundary points form the Kbb matrix. This paper focuses on the
triangularization of a general I_bb matrix on a parallel machine.

Support for this research was provided in part by the National Aeronautics and

Space Administration under contract number NASI-17130 while the author was in

residence at ICASE, NASA Langley Research Center, Hampton, VA 23665, and in
part by the National Science Foundation under Grant No. MCS-8305693.



I. Introduction

The finiteelementmethodisan importanttoolfordeterminingapproximate

solutionstosystemsofdifferentialequationsarisinginsuchdiversephysicalprob-
lemsasstructuralanalysis,fluidflow,and heattransport.In thefiniteelement

approach,a regionofinterest(e.g.,an airplanewing,a crosssectionofa pipe,or
a nuclearreactorcore)isdiscretizedintoindividualelements.The solutionthen

givesdisplacements,vorticities,ortemperaturesatthosepointswheretwoormore

elementsarejoinedtogether.A completedescriptionofthemethodhasappeared

numeroustimesintheliterature,cf.[7].Much ofthecomputationaleffortofthe
finiteelementprocessinvolvesthesolutionofasystemoflinearequations.The co-

efficientmatrixofthissystem,known astheglobalstiffnessmatrix,issymmetric,

positivedefinite,and generallysparse.To reducethetimerequiredtosolvethis

system, reseaz:chershave examined many techniques, among which is Substructuring
or matrix partitioning, cf. [6].

Substructuring is based on the idea of dividing a structure into pieces, which
can then be analyzed relatively independently. As a result of this division, each

point in the discretization is either interior to a substructure or on a boundary be-
tween substructures. The application of substructuring techniques has two obvious
advantages. First, if the finite element method is applied to a structure, and a
portion of that structure is then changed in some way, only interior and boundary
points of the substructures which have changed need to be reexamined. This is an
advantage, for example, in the case of a researcher considering aircraft structure

who wishes to fit a new wing to an existing model. Second, with the increased avail-
ability of parallel processors, substructuring is a natural way to decompose a finite
element problem into relatively independent subproblems. A separate processor
can then be applied to the solution of each subproblem.

The discretization process in the finite element method gives rise to a graph in
a very natural way. Points where two or more elements join together are the vertices
or nodes of the graph; two nodes which border on a common element are joined by
an edge. The structure of the global stiffness matrix is dependent upon the ordering
of the nodes in this finite element graph and is, in fact, equivalent to the structure

of the graph's adjacency matrix. If the nodes corresponding to interior points are
numbered first, one substructure at a time, followed by the nodes corresponding
to boundary points, the global stiffness matrix will have the form of the matrix in

Figure 1, where K_ ") represents the contributions from connections between interior
r_,-(i)and K_ ) represent the connections between interiorpoints of substructure j, "*hi

2



pointsofsubstructurej and the setofboundary points,and K_ representsthe

contributionsfrom boundary-to-boundaryconnections.

•

Kb ) - (_) n-€")i

Figure I. GlobalStiffnessMatrixStructure

The question of the amount of parallelism inherent in the finite element process

• as a whole has been examined, cf. [1]. The focus of this paper is the triangularization
of a general Kbb matrix on a parallel machine. This portion of the problem is of

considerable importance for at least two reasons. First, if any part of the structure

or region of interest is changed, at least a portion of the Kbb matrix must be re-

triangularized. Second, as the number of processors in parallel machines increases,
there will be a tendency to partition structures into more substructures• As the

number of substructures increases, so does the relative number of boundary points

and thus the relative size of the Kbb matrix.

It is assumed that during the solution of the system of linear equations required

by the finite element process, the global stiffness matrix has been reduced by means

of Gaussian elimination to the form of the matrix in Figure 2, so that only the Kbb

matrix is yet to be triangularized.

2. ParallelGaussian Elimlnation

The orderingoftherows and columnsofa givenmatrix(orequivalently,the

orderingofthe nodes in the correspondinggraph)requiredto minimizeparallel

. Gaussian elimination times has been studied by Leuze and Saxton [5]. Following

the development of their model, assume a completely connected parallel machine

- withan arbitrarilylargenumber ofprocessors.The triangularizationofa symmet-

ricsystemoflinearequationscouldbe programmed on sucha machineasfollows.

Each row isstoredin a separateprocessorasa listofnonzerocoefficientswith a

stackof correspondingcolumn indices•This stackindicatesto a processorwhat

communicationwith otherprocessorsisrequired.At eachstepofthe elimination
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Kbb

Figure 2. Partially "Priangulaxized Matrix

process, each processor examines its stack. Suppose machine i (the processor con-

taining row i) finds the index of machine j at the top of its stack (i < j). Machine i

then sends its current row information to machine j and pops its stack. When

machine j finds the index for machine i at the top of its stack, it uses the row

information from machine i to eliminate row j's coefficient in column i and then

updates its stack by merging in the stack of machine i. When all stacks are empty,

the coefficient matrix is in upper triangular form.

Leuze and Saxton then developed a graph theoretic model for parallel Gaussian

elimination. Their notation in [5] is followed here. Given an n x n symmetric matrix

A = {aij}, define a graph G = (V,E) where V = {rl,r2,...,rn} (one vertex per

row), and E = {(ri, ri) [ai,i y£ 0 and i _ j}. An ordering of V is a bijection

f: {1, 2,..., n} --_ V. G$ = (V, E, f) denotes an ordered graph. By application of a

sequence of row and column interchanges, the matrix A can be made to correspond

to Gj- for any ordering f. For each vertex i, the fill of G$ for i is the set of edges

{(j,k)[i < j < k,(i,j) E E,(i,k) E E, and (3,k) _ E}. The filled graph for

ordered graph G$ is defined by adding the fill of G$ for each vertex i in order
i = 1, 2,..., n. The fill of G$ corresponds to additional nonzero coefficients of A

introduced during the elimination process. A parallel time function t: V × V _ N

is defined for a filled ordered graph as follows:
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t(1,1)=o.

For i > 0 and j > i,

" ! t(i,j-- 1), if (i,j) _ E;t(i,j) = _ max[t(i,j-- 1)+ 1,max{t(k,j) + llk< i,(k,j) E E}], otherwise.

For l<i_n,

f0, if forallk<i (k,i)¢E;t(i,i) ( max{t(k,i)lk< i and(k,i)_E}, otherwise.

Figure 3. Ordered Graphs

In Figure 3, the arcs of the ordered graphs are labelled with the appropriate
values from the timing function. Both orderings are optimum with respect to fill,
but onlyorderingB is optimumwithrespectto the timingfunction.

Leuze and Saxton presentno algorithmsforoptimumparallelorderingsand,
in fact, conjecturethat the problemis NP-complete. They do, however,present

° two interestingresults. First,it is demonstratedthat the frequentlyusedorderings
which clusternonzerodements near the diagonalare non-optimumwith respect
to the paralleltime function. This phenomenonis easily understoodthrough an
examinationof a matrixwith nonzeroelementstightly clusterednear the diagonal,
a tridiagonalmatrix. In an N x N tridiagonalmatrix, rowi (1 < i < N) cannot
be used in the eliminationprocessuntil its firstnonzeroelementis eliminatedwith
informationfromrowi- 1. Theprocessis forcedto proceedsequentiallyfromrow1
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to row N. Second, a system of linear equations which can be solved without fill

but for which any minimum parallel time ordering produces fill is presented. This
system demonstrates that in the parallel model, there is not a perfect correlation
between the amount of fill and the number of time steps required to solve a system,
as is the case in the sequential model.

In this paper, orderings for the class of Kbb matrices will be examined. The

special characteristics of the Kbb matrix will be examined in Section 3, heuristic or-
derings applied to Kbb matrices will be discussed in Section 4, and parallel Gaussian
elimination times resulting from the various orderings will be presented in Section 5.

3. The Structure of the Kbb Matrix

When attemptingtodeterminetheKbb matrixstructure,thefollowingobser-

vationaboutfillina symmetricmatrixisimportant.If,intheundirectedgraph

correspondingtomatrixA, thereexistsa pathbetweennodeiand nodej with

intermediatenodesnumberedlessthanrain{i,j},fillwilloccurinmatrixelements

AijandAjs',cf.[4],Ch.5.Consequently,iftheinteriornodesofasubstructureform

aconnectedset,eachboundarynodeofthatsubstructurewillbeconnected(either

originallyorby meansofafilledge)toeveryotherboundarynodeofthatsubstruc-

ture.Itthusseemsappropriatetodividethesetofboundarynodesintosubsets
suchthatallnodesinasubsetareboundarynodestothesamesetofsubstructures.

For example, consider the division of a cube into eight substructures as indi-
cated in Figure 4. The set of boundary nodes can be divided into subsets, such as
the set of nodes on the face between substructures 1 and 2, the set of nodes on the

edge between substructures 1, 2, 3, and 4, the single node which borders all eight

substructures, etc. If each subset is designated by the substructures on which it
borders, Table 1 contains a complete list of boundary node subsets for this example.

If it is assumed that a boundary node is originally connected only to interior
nodes and other boundary nodes of the substructures it borders, then any two nodes
in a given subset are indistinguishable with respect to connectivity, i.e., connected
to precisely the same nodes. Based on this observation, it seems reasonable to
assume that nodes within a given subset should be numbered consecutively. The
question of how subsets should be ordered relative to each other then arises. This
question will be examined in detail in Section 4.

The Kbb matrix can then be considered a partitioned matrix with partitions
separating groups of rows or columns corresponding to boundary node subsets.
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Figure 4. Substructured Cube

Table I.BoundaryNode Subsets

(1) 12 (7) 37 (13) 1234
(2) 13 (8) 48 (1_) 1256
(,5')15 (9) 56 (15) 1357
(J) 24 (10) 57 (16) 2468
(5) 26 (11) 68 (17) 3478
(_)34 (1_)78 (18)5678

(19) 12345678

Sinceeachboundarynodeofa substructureisconnectedtoeveryotherboundary

nodeofthatsubstructure,theblocksresultingfromsuchapartitioningwilleitherbe

. composed entirely of nonzero elements or be composed entirely of zero elements. If
the "rowsubset" and "column subset" of a block share a common substructure, that

blockwillbe nonzero;otherwise,thatblockwillbe zero.Furthermore,whenever

filloccursduringthetriangularizationoftheKbb matrix,an entireblockwillbe

filled.Consequently,thestructureoftheKbbmatrixcanbe representedby amatrix

withonerowandonecolumnperboundarynodesubset,togetherwithinformation

aboutthesizeofeachsubset.Forexample,thesubdividedcubeofFigure4 with
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theboundarynodesubsetorderingofTable1canbe representedby thematrixof
Figure5.

Figure 5. Kbb MatrixStructure

InFigure5,a blacksquarerepresentsa nonzeroblock;awhitesquare,a zero

block.Blockdimensionscanbe determinedfromboundarysubsetsizes.Inthis

example,ifeachsubcube(includingboundarynodes)containsnsnodes,each"face"

(borderingon onlytwosubcubes)contains(n- 1)2 nodes,each"edge"(bordering

on foursubcubes)containsn - 1nodes,and thecentral_point"(borderingon all
eightsubcubes)consistsofasinglenode.

4. Ordering Heuristics

Severalheuristicsfororderingboundarynode subsetswere appliedtotwo dif-

ferentstructures,a cubedividedinto27 subcubes,eachcontainingn3 nodes,and an

"airplane"(Figure6) constructedfrom92 squareplates,eachcontainingn2 nodes.

The substructureboundariesofthe cubewere dividedinto98 subsets;therewere

220 boundarynode subsetsfortheairplane.

For eachofthetwo structures,a ratherarbitrary"natural"ordering(Order-

ing0) ofboundarynode subsetswas initiallychosen.Subsetsofthecubewere di-

videdintothreecategories;all"faces"werenumbered first,followedby all"edges",

and finally,all"points".Allairplanesubsetscomposeda singlecategory.Withina

8
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Figure6.Structureof"Airplane_

category,boundarynodesubsetsborderingon substructure1werenumberedfirst,
followedby unnumberedsubsetsborderingon substructure2,etc.

The orderingheuristicsdescribedbelowarebasedon twoobservationsofgen-
eralgraphs.(Itshouldbe noted,however,thattheheuristicsareappliednotto

generalgraphs,butratherto graphswithverticesconsistingofsetsofboundary
nodesindistinguishablewithrespecttoconnectivity.Blockreorderingsare,there-

fore,performedon thecorrespondingmatrices.)First,thetotalnumberofparallel
time steps is smaller for those orderings which number first those nodes adjacent to

relatively few other nodes. These graph orderings correspond to matrix orderings
which number first those rows for which the least amount of work must be performed
during the elimination process. Thus, intuitively, work can begin on intermediate
rows more quickly. Second, the total number of parallel time steps is larger for those

orderingswhichtendtonumberadjacentnodesconsecutively.Theseareorderings
whichclusternonzeroelementsofthematrixnearthediagonal.Numberingofthis

typeoccursintheCuthill-McKee[2]andreverseCuthill-McKee[3]orderings,which
areincludedforcomparison.

Ordering 1 (Cuthill-McKee):The firstsubsetinthenaturalordering

ischosenarbitrarilyas thestartingsubsetand assignedthenumber 1.

Then,fori--1,...,N (whereN isthetotalnumberofsubsets),findall
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unnumbered subsets adjacent to subset i and number them in increasing
order of degree.

Ordering 2 (Reverse Cuthill-McKee): This ordering is obtained by re-
versing the Cuthill-McKee ordering described above.

In the ordering descriptions that follow, two classes of variables, DEG and
ADJ, are associated with each subset.

DEG variables hold the degree of a subset, the number of subsets to which that
subset is adjacent. By selecting the subset with minimum DEG value to be ordered

next, orderings which number subsets from lowest to highest degree are produced.
DEGI contains the degree of a subset calculated a prior£ Its value does not change
during the ordering process. Some ordering heuristics eliminate a subset when it
has been numbered and pairwise connect all subsets adjacent to this subset. DEG2

is dynamically updated to reflect the resulting changes in degree. The DEG2 value

of a subset is thus dependent upon the ordering selected and may increase as fill
occurs or decrease as adjacent nodes are ordered and eliminated.

ADJ variables hold information about the set of numbered subsets to which

an unnumbered subset is adjacent. By selecting the subset with minimum ADJ

value to be ordered next, orderings which spread nonzero matrix elements, rather
than cluster nonzero elements near the diagonal are produced. ADJI contains the
cardinality of this set of numbered subsets; ADJ2 contains the maximum subset

number from this set. ADJ3 attempts to reflect both the set cardinality and the
maximum value in the set. Whenever a subset i is numbered, for each unnumbered

adjacent subset j, ADJS(j) (initially zero) gets the value one plus the maximum of
ADJS(i) and ADJS(j). ADJ4 is simply a flag which contains the value one if the
set of adjacent numbered subsets is non-empty and the value zero otherwise. For

the problems considered, all ADJ$ flags were quickly set. Therefore, whenever it
was detected that all flags were set, all were reset to zero.

For each of the orderings, the variables of primary and secondary importance
are listed in Table 2. The unnumbered subset with minimum value for the variable of

primary importance is numbered next. Ties are broken by minimizing the variable of

secondary importance. Any remaining ties are broken by numbering first the subset
appearing earliest in the "natural" ordering. Orderings 8, 9, and 10 are equivalent

in a sense to the minimum degree algorithm [8],but correspond to matrix reordering
by blocks rather than individual elements.
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Table 2. Heuristic Orderings

Primary Secondary
- Ordering Variable Variable

3 DEG1 ADJ1
4 ADJI DEG1

5 ADJ2 DEG1

6 ADJ3 DEG1

7 ADJ_ DEG1
8 DEG2 --
9 DEG£ ADJ1

10 DEG2 ADJ2

5. Testing

Each of the heuristic orderings for boundary node subsets was applied both
to the cube problem and to the airplane problem. For each ordering, parallel

Gaussian elimination as described in [5] was applied to the resulting Kbb matrix.
The total number of parallel time steps, the maximum number of processors used
during any one time step, and the average number of processors used per time
step were determined for various size problems. Values of n ranged from three to

nine (each subcube contained n3 nodes and each plate of the airplane contained
n2 nodes). It did not appear necessary to examine larger problems because of
the regularity of the data. For every test case, it was possible to determine a
complexity expression which exactly matched the parallel time step results for all

values of n greater than four. Processor usage results were not quite as regular over
the same range of values for n. Some complexity expressions appear to describe

exactly the asymptotic behavior of the maximum processor values; in other cases
(marked by the symbol "_'), asymptotic behavior was not reached within the test
range. All maximum processor data was, however, of sufficient regularity to allow
determination of the leading coefficient of the complexity expression with some

. degree of confidence. In addition, leading coefficients accurate to two decimal places

were calculated for complexity expressions describing average processor usage. All
complexity expressions are listed in Tables 3 and 4.

Actual values for parallel time steps and average number of processors for

selected orderings are plotted in Figures 7, 8, 9, and 10. Data for several orderings
are not plotted because the curves would lie extremely close to other curves which
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Table 3. Complexity of Heuristic Orderings for Cube Problem

maximum average
Ordering Total steps processors processors

0 108n 2 -- 216n -F 109 ll.On 2 -l- O(n) 7.16n 2 + O(n)

1 108n 2 -- 216n -i- 109 18.0n 2 + O(n) 9.92n 2 + O(n)

2 108n 2 - 216n q- 109 8.0n 2 + O(n) 5.52n 2 + O(n)

3 88n 2 - 176n -}-89 14.5n 2 _- O(n) 8.55n 2 + O(n)

4 79n 2 -- 139n + 59 14.an 2 @ O(n) 8.58n 2 + O(n)

5 71n 2 -- 120n + 46 12.5n 2 -{-O(n) S.2Sn 2 -{-O(n)
6 71n 2 -- 119n + 47 ,14.5n 2 -b O(n) 9.20n 2 + O(n)

7 70n 2 -- 117n +44 12.5n 2 + O(n) 8.40n 2 -{-O(n)
8 63n 2 -- llSn-[- 51 _ 14.0n 2 + O(n) 7.83n 2 + O(n)

9 58n 2 -- 102n % 43 _ 14.0n 2 -{-O(n) 8.50n 2 + O(n)

10 63n 2 -- 114n -{-50 13.0n 2 . O(n) 7.83n 2 @ O(n)

Table 4. Complexity of Heuristic Orderings for Airplane Problem

maximum average
Ordering Total steps processors processors

0 312n - 499 23.0n + O(I) 13.10n + O(I)

1 312n - 499 26.0n + O(1) 16.30n -{-O(I)

2 216n -- 344 13.5n @ 0(1) 6.69n + 0(1)
3 123n-- 133 32.0n+O(I) 13.69n-}-O(I)

4 129n- 140 40.0n+O(1) 13.96n+O(1)
5 132n - 142 44.0n + O(I) 15.60n + O(I)

6 155n--185 _37.0n@O(1) 18.00n+O(1)

7 113n-- 109 39.0n+O(1) 14.04n-I-O(1)

8 106n -- 147 30.0n + O(1) I0.81n @ O(1)
9 llOn -- 151 36.5n q- 0(1) 10.86n + 0(1)

10 118n -- 16i 33.5n + O(1) 10.15n + O(1)

In all cases, the position of an unplotted curve relative to the positions

curves may be determined by examination of the leading coefficient of

appropriate complexity expressions.

Experiments were conducted to compare the heuristic orderings with random
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Figure 7. Parallel Time Steps for Various Orderings Figure 8. Parallel Time Steps for Various Orderings
of the Cube Problem of the Airplane Problem



Figure 9. AverageProcessorsfor VariousOrderings Figure 10. AverageProcessorsfor VariousOrderings
of the Cube Problem of the AirplaneProblem



orderings. For the cube problem, 200 random orderings were examined; for the

airplane problem, 100. Average results from this testing are listed in Table 5 and

plotted in Figures 7, 8, 9, and 10.
t-

"° Table 5. AverageComplexitiesfrom Random Orderings

Cube Problem Airplane Problem

Total time steps: 102.72n 2 + O(n) 256.04n + O(1)

Maximum processors: 21.96n 2 + O(n) 50.63n + O(1)

Averageprocessors: 11.67n2 + O(n) 27.58n+ O(1)

FiguresIIand 12arehistogramsoftheleadingcoefficientsofthecomplexity

expressionsfortotalnumberofparalleltimestepsfortherandomorderingsofthe

cubeproblemand airplaneproblem,respectively.

m

m

m m

m m m

I I I I

_ t00 t05 ti0

Figure 11. Leading Coefficient
of the Parallel Time Complexity Expression
for Random Orderings of the Cube Problem
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Figure 12. Leading Coefficient
of the Parallel Time Complexity Expression

for Random Orderings of the Airplane Problem

6. Conclusions

Methodstoordermatricessothatnonzeroelementsareclusterednearthedi-

agonal(suchasCuthill-McKeeandreverseCuthill-McKee)havebeenwidelyused

in matrixalgorithmimplementationsforsequentialprocessors.Therearethree

primaryreasonsforthepopularityofthesetechniques:(a)theyareeasilyapplied

togeneralmatrices,(b)storageschemesforthereorderedmatricesaresimple,and

(c)fillislimitedtotheregionnearthediagonal.Thiswork,however,demonstrates

thattheseprofile-reducingorderingsareill-suitedforKbbmatricestowhichparallel

eliminationistobeapplied.The dataofFigure11appeartofitanormaldistribu-

tiontruncatedattheupperend.Thistruncationsuggeststhatperhaps108isthe

maximum possiblevaluefortheleadingcccfficientoftheparalleltimecomplexity

expressionforthecubeproblem.Ifso,Cuthill-McKeeandreverseCuthill-McKee

(whichclusternonzeroelementsnearthediagonal)produceorderingswhichare

among theworstwithrespectto totalnumber oftimestepsrequiredforparal-

lelGanssianelimination.Fortheairplaneproblem,theCuthill-McKeeorderingis

worsethananyofthe100randomorderings.Intheotherheuristicorderings,the

functionoftheADJ classofvariablesistopreventclusteringnearthediagonal,

thusincreasingthepossibilityofparallelexecution.
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The attempt to develop heuristics for Kbb matrix orderings for parallel elim-
ination appeared to be highly successful. Reordering the boundary node subsets
significantly reduced the required number of parallel time steps. The best orderings
for the cube required slightly more than one-half of the time steps required by the
Cuthill-McKee ordering. For the airplane, time step results from the best orderings

were approximately one-third of the Cuthill-McKee values. Similar results hold if
comparison is made with average random orderings. Orderings which produced the
best results with respect to total number of time steps were those which minimized
DEG2 as the variable of primary importance, i.e., variations of the minimum de-
gree algorithm. Additional work is needed, however, to establish which tie-breaking
rules are best. For example, the superior performance of ordering 8 over both or-
derings 9 and 10 in the airplane problem is unexpected, since ordering 8 simply
uses ordering 0, rather than ADJ variables, to break ties.

Maximum processor data and average processor data appear to be closely (but
not perfectly) correlated. The average number of processors used per time step is
probably a more important measure of an ordering than the maximum number of
processors used during any one time step. The reason for this is as follows. If the
maximum required number of processors is not available, some work which could

be performed at a particular time step will not be. However, that work which is
performed will likely produce more work for the next time step. Consequently_ the
work to be performed at any given time could consist of both deferred work and
newly available work. It appears, therefore, that if slightly more than the average
processor requirement were available, total parallel time step values would not be
adversely affected to any great extent. Further studies in which the number of

processors is limited are needed to substantiate this conjecture.
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