-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by NASA Technical Reports Server

NASA Contractor Report 172466
ICASE REPORT NO. 84-47

-~ ICASE

PARALLEL TRIANGULARIZATION OF SUBSTRUCTURED
FINITE ELEMENT PROBLEMS

NASA-CR-172466
19850003261

Michael R. Leuze

LIBRARY EOPY

i 101984
Contract No. NAS1-17130
LANGLEY RESEARCH CENTER

September 1984 ~ LIBRARY, NASA
HAMPTON, VIRGINIA

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NANASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665



https://core.ac.uk/display/42847273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




b
N
=

[8X}

)
r“o
43

, 4 0.
: G g

et 1N

lopae

L&)

G
)]




A SV




PARALLEL TRIANGULARIZATION
OF SUBSTRUCTURED FINITE ELEMENT PROBLEMS

Michael R. Leuze
Vanderbilt University

Abstract

Much of the computational effort of the finite element process in-
volves the solution of a system of linear equations. The coefficient
matrix of this system, known as the global stiffness matrix, is
symmetric, positive definite, and generally sparse. An important
technique for reducing the time required to solve this system is
substructuring or matriz partitioning. Substructuring is based on
the idea of dividing a structure intq pieces, each of which can then
be analyzed relatively independently. As a result of this division,
each point in the finite element discretization is either interior to
a substructure or on a boundary between substructures. Contri-
butions to the global stiffness matrix from connections between
boundary points form the Ky, matrix. This paper focuses on the
triangularization of a general K, matrix on a parallel machine.

Support for this research was provided in part by the National Aeronautics and
Space Administration under contract number NAS1-17130 while the author was in
residence at ICASE, NASA Langley Research Center, Hampton, VA 23665, and in
part by the National Science Foundation under Grant No. MCS-8305693.

A5 - 116 092F



1. Introduétion

. The finite element method is an important tool for determining approximate
solutions to systems of differential equations arising in such diverse physical prob-
lems as structural analysis, fluid flow, and heat transport. In the finite element
approach, a region of interest (e.g., an airplane wing, a cross section of a pipe, or
a nuclear reactor core) is discretized into individual elements. The solution then
gives displacements, vorticities, or temperatures at those points where two or more
elements are joined together. A complete description of the method has appeared
numerous times in the literature, cf. [7]. Much of the computational effort of the .-
finite element process involves the solution of a system of linear equations. The co-
efficient matrix of this system, known as the global stiffness matrix, is symmetric,
positive deﬁnite, and generally sparse. To reduce the time required to solve this
system, researchers have examined many techniques, among which is substructurmg
or matriz partitioning, cf. [6]. _

Substructuring is based on the idea of dividing a structure into pieces, which
can then be analyzed relatively independently. As a result of this division, each
| point in the discretization is either interior to a substructure or on a boundary be-
tween substructures. The application of substructuring techniques has two obvious
advantages. First, if the finite element method is applied to a structure, and a
portion of that structure is then changed in some way, only interior and bound‘ary
points of the substructures which have changed need to be reexamined. This is an
advantage, for example, in the case of a researcher considering aircraft structure
who wishes to fit a new wing to an existing model. Second, with the increased avail-
ability of parallel processors, substructuring is a natural way to decompose a finite
element problem into relatively independent subproblems. A separate processor
can then be applied to the solution of each subproblem.
The discretization process in the finite element method gives rise to a graph in
a very natural way. Points where two or more elements join together are the vertices
or nodes of the graph; two nodes which border on a common element are joined by
an edge. The structure of the global stiffness matrix is dependent upon the ordering
of the nodes in this finite element graph and is, in fact, equivalent to the structure
of the graph’s adjacency matrix. If the nodes corresponding to interior points are
numbered first, one substructure at a time, followed by the nodes corresponding
to boundary points, the global stiffness matrix will have the form of the matrix in
Figure 1, where K,(,’ ) represents the contributions from connections between interior
points of substructure j, K; () and K,.(;" ) represent the connections between interior

2.



points of substructure 5 and the set of boundary points, and Kp, represents the
contributions from boundary-to-boundary connections.

K Kl

(1 (2) (n)
\ bi ) Kbi cee Kb? . Kbb J
Figure 1. Global Stiffness Matrix Structure

The question of the amount of parallelism inherent in the finite element process
- as a whole has been examined, cf. [1]. The focus of this paper is the triangularization
of a general Kj, matrix on a parallel machine. This portion of the problem is of
considerable importance for at least two reasons. First, if any part of the structure
.or region of interest is changed, at least a portion of the Ky, matrix must be re-
triangularized. Second, as the number of processors in parallel machines increases,
there will be a tendency to partition structures into more substructures. As the
number of substructures increases, so does the relative number of boundary points
and thus the relative size of the K, matrix.

It is assumed that during the solution of the system of linear equations required
by the finite element process, the global stiffness matrix has been reduced by means
of Gaussian elimination to the form of the matrix in Figure 2, so that only the K
matrix is yet to be triangularized.

2. Parallel Gaussian Elimination

The ordering of the rows and columns of a given matrix (or equivalently, the
ordering of the nodes in the corresponding graph) required to minimize parallel
Gaussian elimination times has been studied by Leuze and Saxton [5]. Following
the development of their model, assume a completely connected parallel machine
with an arbitrarily large number of processors. The triangularization of a symmet-
ric system of linear equations could be programmed on such a machine as follows.
Each row is stored in a separate processor as a list of nonzero coefficients with a
stack of corresponding column indices. This stack indicates to a processor what
communication with other pi'ocessors is required. At each step of the. elimination

3



Kbb
~ A

Figure 2. Partially Triangularized Matrix

process, each processor examines its stack. Suppose machine ¢ (the processor con-
taining row 7) finds the index of machine j at the top of its stack (i < 7). Machine ¢
then sends its current row information to machine 7 and pops its stack. When
machine 5 finds the index for machine ¢ at the top of its stack, it uses the row
information from machine ¢ to eliminate row 3’s coefficient in column ¢ and then
updates its stack by merging in the stack of machine 1. When all stacks are empty,
the coefficient matrix is in upper triangular form.

Leuze and Saxton then developed a graph theoretic model for parallel Gaussian
elimination. Their notation in [5] is followed here. Given an n X n symmetric matrix
A = {ai;}, define a graph G = (V, E) where V = {ry,r2,...,r,} (one vertex per
row), and E = {(ri,r;)|ai; # Oand¢ # j}. An ordering of V is a bijection
f:{1,2,...,n} = V. Gy = (V, E, f) denotes an ordered graph. By application of a
sequence of row and column interchanges, the matrix A can be made to correspond
to Gy for any ordering f. For each vertex ¢, the fill of G for ¢ is the set of edges
{(Gk)|1 < 7 < k,(3,7) € E,(i,k) € E, and (5,k) ¢ E}. The filled graph for
ordered graph Gy is defined by adding the fill of Gy for each vertex ¢ in order
¢t = 1,2,...,n. The fill of Gy corresponds to additional nonzero coefficients of A
introduced during the elimination process. A parallel time function £:V xV — N
is defined for a filled ordered graph as follows:

4



t(1,1) =0.

Fort>0and 5> 1,

t(i ) = {t(iaj - l)a if (ivj) ¢ E;
1J max[t(¢, 5 — 1) + 1,max{t(k,5) + 1|k < 1,(k,5) € E}], otherwise.

For1<i$n,

if forall k <i (k%) ¢ E;

.. 0,
t(i,7) = {max{t(k, )| k < ¢ and(k,i) € E}, otherwise.

Figure 8. Ordered Graphs

In Figure 3, the arcs of the ordered graphs are labelled with the appropriate
values from the timing function. Both orderings are optimum with respect to fill,
but only ordering B is optimum with respect to the timing function.

Leuze and Saxton present no algorithms for optimum parallel orderings and,
in fact, conjecture that the'problem is NP-complete. They do, however, present
two interesting results. First, it is demonstrated that the frequently used orderings
which cluster nonzero elements near the diagonal are non-optimum with respect
to the parallel time function. This phenomenon is easily understood through an
examination of a matrix with nonzero elements tightly clustered near the diagonal,
a tridiagonal matrix. In an N x N tridiagonal matrix, row ¢ (1 < ¢ < N) cannot
be used in the elimination process until its first nonzero element is eliminated with
information from row ¢ —1. The process is forced to proceed sequentially from row 1

5



to row N. Second, a system of linear equations which can be solved without fill
but for which any minimum parallel time ordering produces fill is presented. This
system demonstrates that in the parallel model, there is not a perfect correlation
between the amount of fill and the number of time steps required to solve a system,
as is the case in the sequential model. _

In this paper, orderings for the class of Kp, matrices will be examined. The
special characteristics of the Kp, matrix will be examined in Section 3, heuristic or-
derings applied to Kpp matrices will be discussed in Section 4, and parallel Gaussian
elimination times resulting from the various orderings will be presented in Section 5.

8. The Structure of the K, Matrix

When attempting to determine the Ky, matrix structure, the following obser-
vation about fill in a symmetric matrix is important. If, in the undirected graph
corresponding to matrix A, there exists a path between node ¢ and node j with
intermediate nodes numbered less than min{z, 5}, fill will occur in matrix elements
A;;j and Aj;, cf. [4], Ch. 5. Consequently, if the interior nodes of a substructure form
a connected set, each boundary node of that substructure will be connected (either
originally or by means of a fill edge) to every other boundary node of that substruc-
ture. It thus seems appropriate to divide the set of boundary nodes into subsets
such that all nodes in a subset are boundary nodes to the same set of substructures.

For example, consider the division of a cube into eight substructures as indi-
cated in Figure 4. The set of boundary nodes can be divided into subsets, such as
the set of nodes on the face between substructures 1 and 2, the set of nodes on the
edge between substructures 1, 2, 3, and 4, the single node which borders all eight.
substructures, etc. If each subset is designated by the substructures on which it
borders, Table 1 contains a complete list of boundary node subsets for this example.

If it is assumed that a boundary node is originally connected only to interior
nodes and other boundary nodes of the substructures it borders, then any two nodes
in a given subset are indistinguishable with respect to connectivity, i.e., connected
to precisely the same nodes. Based on this observation, it seems reasonable to
-assume that nodes within a given subset should be numbered consecutively. The
question of how subsets should be ordered relative to each other then arises. This
question will be examined in detail in Section 4.

The Kpp matrix can then be considered a partitioned matrix with partitions
separating groups of rows or columns corresponding to boundary node subsets.

6



8
7

4
e

Figure 4. Substructured Cube

Table 1. Boundary Node Subsets
(1)12  (7)37 (13) 1234
(2)13 (8) 48 (14) 1256
(8)15 (9) 56 (15) 1357

(4)24 (10) 57 (16) 2468
(5)26 (11)68 (17) 3478
(6) 34 (12)78 (18) 5678

(19) 12345678

Since each boundary node of a substructure is connected to every other boundary
node of that substructure, the blocks resulting from such a partitioning will either be
composed entirely of nonzero elements or be composed entirely of zero elements. If
the “row subset” and “column subset” of a block share a common substructure, that
block will be nonzero; otherwise, that block will be zero. Furthermore, whenever
fill occurs during the triangularization of the Kj, matrix, an entire block will be
filled. Consequently, the structure of the K, matrix can be represented by a matrix
with one row and one column per boundary node subset, together with information
about the size of each subset. For example, the subdivided cube of Figure 4 with

7




the boundary node subset ordering of Table 1 can be represented by the matrix of
Figure 5.

~ Figure 5. Ky, Matrix Structure

In Figure 5, a black square represents a nonzero block; a white square, a zero
block. Block dimensions can be determined from boundary subset sizes. In this
example, if each subcube (including boundary nodes) contains n2 nodes, each “face”
(bordering on only two subcubes) contains (n — 1)? nodes, each “edge” (bordering
on four subcubes) contains n — 1 nodes, and the central “point” (bordering on all
eight subcubes) consists of a single node.

4. Ordering Heuristics

Several heuristics for ordering boundary node subsets were applied to two dif-
ferent structures, a cube divided into 27 subcubes, each containing n® nodes, and an
“airplane” (Figure 6) constructed from 92 square plates, each containing n? nodes.
The substructure boundaries of the cube were divided into 98 subsets; there were
220 boundary node subsets for the airplane.

For each of the two structures, a rather arbitrary “natural” ordering (Order-
ing 0) of boundary node subsets was initially chosen. Subsets of the cube were di-
vided into three categories; all “faces” were numbered first, followed by all “edges”,
and finally, all “points”. All airplane subsets composed a single category. Within a

8



" Figure 8. Structure of “Airplane”

category, boundary ncde subsets bordering on substructure 1 were numbered first,
followed by unnumbered subsets bordering on substructure 2, etc.

The ordering heuristics described below are based on two observations of gen-
eral graphs. (It should be noted, however, that the heuristics are applied not to
general graphs, but rather to graphs with vertices consisting of sets of boundary
nodes indistinguishable with respect to connectivity. Block reorderings are, there-
fore, performed on the corresponding matrices.) First, the total number of parallel
time steps is smaller for those orderings which number first those nodes adjacent to
relatively few other nodes. These graph orderings correspond to matrix orderings
which number first those rows for which the least amount of work must be performed
during the elimination process. Thus, intuitively, work can begin on intermediate
rows more quickly. Second, the total number of parallel time steps is larger for those
orderings which tend to number adjacent nodes consecutively. These are orderings
which cluster nonzero elements of the matrix near the diagonal. Numbering of this
type occurs in the Cuthill-McKee [2] and reverse Cuthill-McKee [3] orderings, which
are included for comparison.

Ordering 1 (Cuthill-McKee): The first subset in the natural ordering
is chosen arbitrarily as the starting subset and assigned the number 1.
Then, for 7 = 1,..., N (where N is the total number of subsets), find all

9




unnumbered subsets adjacent to subset ¢ and number them in increasing
order of degree.

Ordering 2 (Reverse Cuthill-McKee): This ordering is obtained by re-
versing the Cuthill-McKee ordering described above.

In the ordering descriptions that follow, two classes of variables, DEG and
ADJ, are associated with each subset.

DEG variables hold the degree of a subset, the number of subsets to which that
subset is adjacent. By selecting the subset with minimum DEG value to be ordered
next, orderings which number subsets from lowest to highest degree are produced. |
DEGI contains the degree of a subset calculated a priori. Its value does not change
. during the ordering process. Some ordering heuristics eliminate a subset when it
has been numbered and pairwise connect all subsets adjacent to this subset. DEG2
is dynamically updated to reflect the resulting changes in degree. The DEG2 value -
of a subset is thus dependent upon the ordering selected and may increase as fill
occurs or decrease as adjacent nodes are ordered and eliminated.

ADJ variables hold information about the set of numbered subsets to which
an unnumbered subset is adjacent. By selectmg the subset with minimum ADJ
value to be ordered next, orderings which spread nonzero matrix elements, rather
than cluster nonzero elements near the diagonal are produced. ADJI contains the
cardinality of this set of numbered subsets; ADJ2 contains the maximum subset
number from this set. ADJS attempts to reflect both the set cardinality and the
maximum value in the set. Whenever a subset ¢ is numbered, for each unnumbered
adjacent subset 7, ADJS(7) (initially zero) gets the value one plus the maximum of
ADJS(i) and ADJS(j). ADJ4 is simply a flag which contains the value one if the
set of adjacent numbered subsets is non-empty and the value zero otherwise. For
the problems considered, all ADJ4 flags were quickly set. Therefore, whenever it
was detected that all flags were set, all were reset to zero.

For each of the orderings, the variables of primary and secondary importance
are listed in Table 2. The unnumbered subset with minimum value for the variable of
primary importance is numbered next. Ties are broken by minimizing the variable of
secondary importance. Any remaining ties are broken by numbering first the subset
appearing earliest in the “natural” ordering. Orderings 8, 9, and 10 are equivalent
in a sense to the minimum degree algorithm [8], but correspond to matrix reordering
by blocks rather than individual elements.

10




Table 2. Heuristic Orderings

Primary Secondary
Ordering Variable Variable

3 DEG1 ADJ1
4 ADJ1 DEG1
5 ADJ? DEG1
6 ADJS DEG1
7 ADJ4 DEG1
8 DEGe —

9 DEG2 ADJ1
10 DEG? ADJ2

5. Testing

Each of the heuristic orderings for boundary node subsets was applied both
to the cube problem and to the airplane problem. For each ordering, parallel
Gaussian elimination as described in [5] was applied to the resulting Kjp, matrix.
The total number of paralle] time steps, the maximum number of processors used
during any one time step, and the average number of processors used per time
step were determined for various size problems. Values of n ranged from three to
nine (each subcube contained n® nodes and each plate of the airplane contained
n? nodes). It did not appear necessary to examine larger problems because of
the regularity of the data. For every test case, it was possible to determine a
complexity expression which exactly matched the paralle]l time step results for all
values of n greater than four. Processor usage results were not quite as regular over
the same range of values for n. Some complexity expressions appear to describe
exactly the asymptotic behavior of the maximum processor values; in other cases
(marked by the symbol “~”), asymptotic behavior was not reached within the test
range. All maximum processor data was, however, of sufficient regularity to allow
determination of the leading coefficient of the complexity expression with some
degree of confidence. In addition, leading coefficients accurate to two decimal places
were calculated for complexity expressions describing average processor usage. All
complexity expressions are listed in Tables 3 and 4.

Actual values for parallel time steps and average number of processors for
selected orderings are plotted in Figures 7, 8, 9, and 10. Data for several orderings
are not plotted because the curves would lie extremely close to other curves which

11




Table 3. Complexity of Heuristic Orderings for Cube Problem

maximum average
Ordering Total steps processors processors
0 108n? —216n 4109  11.0n2 +O(n) 7.16n2 4 O(n)
1 108n% —216n+109  18.0n% + O(n) 9.92n2 + O(n)
2 108n2 — 216n + 109 8.0n2 + O(n) 5.52n% 4 O(n)
3 88n% —176n+89  14.5n® + O(n) 8.55n2% 4 O(n)
4 79n? —139n+59  14.5n2 + O(n) 8.58n2 4 O(n)
5 71n? —120n+46  12.5n% + O(n) 8.28n2 4 O(n)
6 71n? —119n + 47  14.5n% + O(n) 9.20n2? 4 O(n)
7 70n? —117n +44 12,502+ O(n) 8.40n% 4 O(n)
8 63n% — 115n + 51 ~14.0n% 4+ O(n) 7.83n2 + O(n)
9 '58n? —102n + 43 ~14.0n2 4+ O(n) 8.50n2 + O(n)
10 63n? —114n +50  13.0n? +O(n) 7.83n2 + O(n)

Table 4. Complexity of Heuristic Orderings for Airplane Problem

maximum average
Ordering Total steps processors processors
0 312n — 499 23.0n+0O(1) 13.10n+ O(1)
1 312n — 499 26.0n + O(1) 16.30n 4+ O(1)
2 216n — 344 13.5n +O(1) 6.69n + O(1)
3 123n — 133 32.0n+ 0O(1) 13.69n + O(1)
4 129n — 140 40.0n + O(1) 13.96n+ O(1)
5 132n — 142 44.0n+O(1) 15.60n+ O(1)
6 155n — 185 ~37.0n 4+ O(1) 18.00n+ O(1)
7 113n — 109 39.0n 4+ O(1) 14.04n + O(1)
8 106n — 147 30.0n + O(1) 10.81n+ O(1)
9 110n — 151 36.5n + O(1) 10.86n + O(1)
10 118n — 161  33.5n+O(1) 10.15n 4 O(1)

are plotted. In all cases, the position of an unplotted curve relative to the positions
of plotted curves may be determined by examination of the leading coefficient of
the appropriate complexity expressions. V

~ Experiments were conducted to compare the heuristic orderings with random

12




£ |

Orderings

-840
- RANDOA

Steps

8 ] n

Figure 7. Parallel Time Steps for Various Ordermgs

of the Cube Problem

Steps

%0

1300

Orderings

Figure 8. Parallel Time Steps for Various Ordermgs

of the Airplane Problem



41

Orderings

; RAiDen

Orderings

Processors g
Processors s
1o s
l"' "
s /
e} 3|
/ .3
/ -9
T ™ : /
./.o
®
/ .
m !
9
3 4 S 6 7 8 9 n 3 4 ] ¢ 7 8 9 n
Figure 9. Average Processors for Various Orderings Figure 10. Average Processors for Various Orderings

of the Cube Problem ’ of the Airplane Problem



orderings. For the cube problem, 200 random orderings were examined; for the
airplane problem, 100. Average results from this testing are listed in Table 5 and

plotted in Figures 7, 8, 9, and 10.

Table 5. Average Complexities from Random Orderings

Cube Problem Airplane Problem

Total time steps: 102.72n2 + O(n) 256.04n 4+ O(1)
Maximum processors:  21.96n2 + O(n) 50.63n + O(1)
Average processors: 11.67n% + O(n) 27.58n 4+ O(1)

Figures 11 and 12 are histograms of the leading coeficients of the complexity
expressions for total number of parallel time steps for the random orderings of the

cube problem and airplane problem, respectively.

il

9% 100 105 o

~ Figure 11. Leading Coefficient
of the Parallel Time Complexity Expression
for Random Orderings of the Cube Problem

15




290

P % 20 0 20

Figure 12. Leading Coefficient
of the Parallel Time Complexity Expression
for Random Orderings of the Airplane Problem

6. Conclusions

Methods to order matrices so that nonzero elements are clustered near the di-
agonal (such as Cuthill-McKee and reverse Cuthill-McKee) have been widely used
in matrix algorithm implementations for sequential processors. There are three
primary reasons for the popularity of these techniques: (a) they are easily applied
to general matrices, (b) storage schemes for the reordered matrices are simple, and
(c) fill is limited to the region near the diagonal. This work, however, demonstrates
that these profile-reducing orderings are ill-suited for Kpp, matrices to which parallel
elimination is to be applied. The data of Figure 11 appear to fit a normal distribu-
tion truncated at the upper end. This truncation suggests that perhaps 108 is the
maximum possible value for the leading ccefficient of the parallel time complexity
expression for the cube problem. If so, Cuthill-McKee and reverse Cuthill-McKee
(which cluster nonzero elements near the diagonal) produce orderings which are
among the worst with respect to total number of time steps required for paral-
lel Gaussian elimination. For the airplane problem, the Cuthill-McKee ordering is
worse than any of the 100 random orderings. In the other heuristic orderings, the
function of the ADJ class of variables is to prevent clustering near the diagonal,
thus increasing the possibility of parallel execution.

16




The attempt to develop heuristics for Kp, matrix orderings for parallel elim-
ination appeared to be highly successful. Reordering the boundary node subsets
significantly reduced the required number of parallel time steps. The best orderings
for the cube required slightly more than one-half of the time steps required by the
Cuthill-McKee ordering. For the airplane, time step results from the best orderings
were approximately one-third of the Cuthill-McKee values. Similar results hold if
comparison is made with average random orderings. Orderings which produced the
best results with respect to total number of time steps were those which minimized
DEG? as the variable of primary importance, i.e., variations of the minimum de-
gree algorithm. Additional work is needed, however, to establish which tie-breaking
rules are best. For example, the superior performance of ordering 8 over both or-
derings 9 and 10 in the airplane problem is unexpected, since ordering 8 simply
" uses ordering 0, rather than ADJ variables, to break ties.

Maximum processor data and average processor data appear to be closely (but
not perfectly) correlated. The average number of processors used per time step is
probably a more 'important measure of an ordering than the maximum number of
processors used during any one time step. The reason for this is as follows. If the
maximum required number of processors is not available, some work which could
be performed at a particular time step will not be. However, that work which is
performed will likely produce more work for the next time step. Consequently, the
work to be performed at any given time could consist of both deferred work and
newly available work. It appears, therefore, that if slightly more than the average
processor requirement were available, total parallel time step values would not be
adversely affected to any great extent. Further studies in which the number of
processors is limited are needed to substantiate this conjecture.

Acknowledgement.

The author wishes to thank Loyce Adams and Merrell Patrick for helpful con-
versations which initiated this work, and Larry Dowdy and Steve Schach for their
many useful comments after careful readings of preliminary drafts of this paper.

17



References

[1] L. M. Adams and R. Voigt, “A methodology for exploiting parallelism in the
finite element process,” Proceedings of the NATO Workshop on High Speed
Computations, edited by J. Kowalik, NATO ASI Series, Series F' 7, Springer-
Verlag, Berlin, 373-392.

[2] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matri-
ces,” Proc. 24th Nat. Conf. Assoc. Comput. Mach., ACM Publications (1969),
157-172.

[3] A. George, “Computer implementation of the finite element method,” Tech.
Rept. STAN-CS-208, Stanford University (1971).

[4] A. George and J. W. Liu, Computer Solution of Large Sparse Posmve Definite
Systems, Prentice-Hall, Englewood Cliffs, NJ (1981).

[5] M. R. Leuze and L. V. Saxton, “On minimum parallel computing times for
Gaussian elimination,” Congressus Numerantium 40 (1983), 169-179.

[6] A. Noor, H. Kamel, and R. Fulton, “Substructuring techniques—status and
projections,” Computers and Structures 8 (1978), 621-632. )

[7] G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-
Hall, Englewood Cliffs, NJ (1973). : _

[8] W. F. Tinney, “Comments on using sparsity techniques for power system prob-
lems,” Sparse Matrix Proceedings, IBM Research Rept. RAI 3-12-69 (1969). |

18







1 Report No. NASA CR-172466 " 2. Government Accession No. 3. Recipient’s Catalog No.
ICASE Report No. 84-47
4. Title and Subtitle 5. Report Date
Parallel Triangularization of Substructured Finite September 1984
Element Problems 6. Performing Organization Code
7. Author(s) 8. Performing Organization.ﬂeport No.
Michael R. Leuze 84-47
"10. Work Unit No.
9. Performing Organization Name and Address
Institute for Computer Applications in Science
and Engineering 11, Contract or Grant No.
Mail Stop 132C, NASA Langley Research Center NAS1-17130
Hampton, VA 23665 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546 505-31-83-01

. Supplementary Notes

Langley Technical Monitor: J. C. South, Jr.
Final Report

16.

solution of a system of linear equations.

Abstract

Much of the computational effort of the finite element process involves the

The coefficient matrix of this system,

known as the global stiffness matrix, is symmetric, positive definite, and generally

sparse.
is substructuring or matrix partitioning.
dividing a structure 1into pleces,
independently.

a

general Ky, matrix on a parallel machine.

An important technique for reducing the time required to solve this system
Substructuring 1s based on the idea of
each of which can then be analyzed relatively
As a result of this division, each point in the finite element
discretization is either interior to a substructure
substructures.,
boundary points form the Ky matrix.

or on a boundary between
Contributions to the global stiffness matrix from connections between
This paper focuses on the triangularization of

17. Key Words (Suggested by Author(s})

parallel computing
finite element method
substructuring

18. Distribution Statement

61 - Computer Programming & Software

Unclassified - Unlimited

19. Security Classif, (of this report)
Unclassified

20. Security Classif. {of this page) 21. No. of Pages 22. Price
Unclassified 19 A02

X-305 For sale by the National Technical Information Service, Springfield, Virginia 22161







(Ch




